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This study looks at an interesting relationship that was found between elementary 

education students' advancement in mathematics and encouragement they felt to have 

received from home, the higher scoring students advancement correlating negatively 

with encouragement. In a qualitative analysis we identified different aspects of 

mathematics in family context and found some possible clues for explaining the 

negative correlation between encouragement and advancement: we found strong 

positive role models among those who advanced and conflicts with parent during 

mathematics tutoring among those who declined. 

INTRODUCTION 

Family background and mathematics 

Studies have repeatedly confirmed the effect of family background in students' 

success in schools. In TIMMS study it was possible to predict a significant part of the 

test result variation of US and Western European students by only a few family 

background variables, such as parent' education, amount of books at home and 

presence of both parents in family. However, the effect of family background varied 

between countries (9% in Iceland; 26.4% in Switzerland). (Woessmann, 2004) 

There is also evidence for the effect of parental attitudes and beliefs on child's 

attitudes and beliefs. Catsambis (2001) found a consistent conclusion across studies 

that parents' educational aspirations are strongly associated to students' levels of 

achievement in both primary and secondary education. She also found some negative 

relationships between parental supervision of children's homework and students' 

achievement. These results were confirmed in her study of 13 580 parents and their 

children. Multivariate analyses compared grade 12 students of similar socio-

economic backgrounds, family configuration, student characteristics and prior 

achievement in the 8th grade. Catsambis' findings suggest that active encouragement 

for preparing for college may be one of the ways by which parents influence their 

adolescents' academic success. However her studies shed no light on the negative 

influence of some parental practices, which has been repeatedly attributed to parents' 

attempts to deal with already existing academic or behavioural problems. 

In this report we will have a different perspective to this question and look at how 

teacher education students perceive retrospectively their childhood and family 

influence. 
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Mathematical identity 

How students engage with mathematics is to a large degree determined by their 

mathematical identity (Kaasila, Hannula, Laine & Pehkonen, 2005). Mathematical 

identity is constructed on the basis of student experiences in mathematics and their 

interpretation of these experiences. The interpretation is largely a social phenomenon, 

and is influenced by mathematics teacher, friends, and family. Op 't Eynde (2004) 

suggests that students' identity emerges in the situation: learning in the mathematics 

education community is characterised by an actualisation of (mathematical) identity 

through interactions with the teacher, the books, and the peers one engages with. We 

further propose that different identities suggested by Sfard & Prusak (2005) may 

emerge in different situations. However, identities are not only situational but each 

person brings one's own history to the situation and that will influence to a large 

degree what kind of identities are likely to actualise in the situation.  

People often develop their sense of identity by seeing themselves as protagonists in 

different stories. What creates the identity of the character is the identity of the story 

and not the other way around (Ricoeur, 1992). Sfard & Prusak (2005) define 

identities as collections of those narratives that are reifying, enforceable and 

significant. In this article we shall look at the kinds of narratives student teachers 

have about themselves and mathematics within family context. Furthermore, these 

narratives will be contrasted with their success in mathematics. 

Project description 

In teacher education, there is the problem of low mathematical competencies and 

negative affective disposition of many students who enter the education. In Finland, 

teacher education is a popular field of study and less than 10 % of applicants are 

accepted for the education (NBE, 2005). Yet, roughly one fifth of the accepted 

students have a negative affective disposition towards mathematics (Hannula, Kaasila, 

Laine & Pehkonen, 2005b) and 10 % have poor grades in mathematics. The problem 

remains for a number of those who finish their teacher education. 

This report is part of a research project "Elementary teachers' mathematics" (project 

#8201695), financed by the Academy of Finland (see Hannula, Kaasila, Laine & 

Pehkonen 2005a; 2005b). The project draws on data collected of 269 trainee teachers 

at three Finnish universities (Helsinki, Turku, Lapland). In this report we shall look at 

students' mathematics achievement and their advancement since the first test. As 

possible predicting variables, we shall look at the mathematics achievement and 

beliefs in the beginning of studies and student's gender. 

Earlier results 

In earlier analyses (Hannula et al., 2005b) we had identified eight principal 

components of students' affect, the correlations between these components, and six 

typical affective profiles of student teachers. In the core of student affect there were 

three components that were closely correlated with each other: mathematical self-
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confidence, liking of mathematics, and perceived difficulty of mathematics. 

Correlated to this core, were five additional components: positive expectation of 

future success, view of earlier teacher(s), perceived own diligence, insecurity as a 

teacher in mathematics, and encouragement from own family (in order of declining 

correlation with the core). Based on these components, six typical profiles were 

identified primarily according to their core affect (positive, neutral, negative), and, 

secondarily, mainly according to diligence and received encouragement. The two 

positive profiles were autonomous (hard working, not encouraged) and encouraged 

(hard working, encouraged). The two neutral profiles were pushed (encouraged, not 

hard working) and diligent (not encouraged, rather hard working). The remaining two 

negative profiles were lazy (not encouraged, not hard working, insecure as teacher) 

and hopeless (hard working, not encouraged, no positive expectation). 

Affect was related to performance, a positive correlation was found between positive 

affective disposition and high scores in the test. The test result was also affected by 

gender (male students scoring higher), previous mathematics studies (better 

achievement and more advanced course selection predicting higher scores), and the 

enrolment procedure (students at different universities scored differently; for details 

see Hannula et al., 2005). 

The six clusters did continue to have differences in their post-test results. That means 

that the clusters do reflect relevant student types with respect to their relationship 

with mathematics. There was even some difference in the advancement of clusters, 

although only one difference was statistically significant. The 'diligent' students had 

advanced and 'encouraged' students regressed so that their success was now on equal 

level. A closer analysis of the quantitative data revealed that the student 

encouragement from their family had a different effect on student advancement 

according to their achievement in the pre-test: among successful students the family 

encouragement was negatively correlated with advancement and among least 

successful students there was a positive correlation between encouragement and 

advancement (Hannula, Kaasila, Pehkonen & Laine, In print). We will now focus on 

the qualitative data In order to find some possible explanations to this finding. 

METHODS 

Two questionnaires were administered in autumn 2003 to measure students' situation 

in the beginning of their mathematics education course. The aim of the questionnaires 

was to measure students' experiences connected to mathematics, their views of 

mathematics, and their mathematical skills. Another mathematics test was 

administered next spring after the course. This post-test consisted of four tasks that 

measured understanding of infinity, division, scale and percentage 

According to the preliminary analysis of the first questionnaire, 21 student teachers 

were selected for a qualitative study. They represented different universities and three 

different student types with respect to mathematics: successful with high self-

confidence, unsuccessful with low self-confidence, and average performers with 
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indifferent attitude towards mathematics. The focus students were interviewed in the 

beginning and at the end of their mathematics education course.  

In the semi-structured interview we asked - among other topics - student teachers 

about their memories of mathematics in their home. If necessary, we specifically 

asked about their parents’ and siblings’ roles in their learning of mathematics. Many 

of them brought these issues spontaneously when they told about their mathematical 

school memories. 

In this analysis we focus on a theme ‘mathematics and home’, which was identified 

in the quantitative analysis as an interesting issue (For details, see Hannula et al, In 

print). In the first phase we read all the transcribed interviews and coded all instances 

where they talked about home, parents, siblings or other relatives. These were read 

again to identify different aspects relating to home. Each focus student's relationship 

with home was summarised as a short memo. Finally, these analyses were contrasted 

with each student’s success in pre- and post-test. 

RESULTS 

From the interviews we identified the following six themes relating to home. Within 

each of the topics there was also variation between students. 

1) Help from home. Most students had received some help from their family 

members at some stage of their mathematics education. Some parents had not been 

able to help - at least not all the way through. Some students had not wanted help. 

Interviewer:  What kind of home-related mathematics experiences do you have, and, for 
example, parents and siblings. 

Heidi:  Well, from childhood I do remember and, that's elementary school time, 
mother and father helped as much as, as, hah, they could. 

Interviewer:  Uhm, yes. 

Heidi:  And there was always help available. 

2) Role models at home. Students had different opinions about their family members' 

mathematical competencies. Some family members were ‘positive’ role models of 

successful and interested mathematics learners/users, some ‘negative’ role models of 

unsuccessful mathematics failures or uninterested mathematics avoiders. 

Ella:  Mother just told that she had never been good in mathematics, but had just 
worked insanely hard so she has been able to get good grades. 

Mia:  My sister, she was a real top genius in mathematics [...]  

3) Value of mathematics at home. In some homes mathematics was highly valued, in 

others there was indifferent or even devaluing attitude. 

Sini:  Father, being an engineer, is, is, appreciates mathematics, and mother is 
teacher, so in that sense also appreciates all subjects and mathematics 
among others. 
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4) Encouragement and/or demands from home. Some homes demanded student to put 

effort in schoolwork, some gave encouragement at the times of success or failure, and 

some did neither. 

Ella:  Father said that if I choose to take the more advanced mathematics in high 
school, then I would get like the most expensive graphic calculator 
available.  

Aila:  I've been always really diligent student [...] and had high demands from 
home [...] so father especially, hah, hah, would have demanded 
mathematics. 

5) Independence from home. Some students expressed clearly that they took 

independently care of their studying, while others indicated clear dependence for the 

help available at home. 

Kati:  From primary grade I remember when we always did with my father the 
extra tasks from behind of the book. Then, I felt somehow embarrassed 
going to the board, because I knew that father had checked my work and I 
knew it to be correct. And then, eventually, I asked my father not the 
check my work, [...] not to say if it's wrong. I felt, somehow, dishonest 
going to the board.  

6) Helping siblings with mathematics. Most students who had younger siblings had 

helped them with mathematics. 

Interviewer:  Have you spoken about mathematics with your siblings? 

Leo:  Sometimes helped my sisters with homework or with a topic; brother is so 
young that I have not helped him. Oldest of my sisters is two years 
younger. I've helped her somewhat. High school especially. [...] She is not 
as interested in mathematics as I am, so she chose the less advanced 
mathematics in high school, and she's had a lot of trouble with it. I felt it 
was nice that I could help her, but at times I felt it was very difficult to 
help her understand. When many things are clear as day for me but it was 
not the case with her.  

When student interview data was contrasted with quantitative data, we noticed some 

interesting regularities. Most of the focus students who participated in both pre- and 

post-test achieved better in the post-test. 

There were only three students whose relative achievement regressed from pre-test to 

post-test and one of them was only a minimal regression (from 1.44 to 1.14). Julia 

had scored well in the pre-test (1.75) and her success had dropped significantly by the 

post-test (0.12). She is especially interesting, because her family had been 

encouraging her strongly. Tina scored slightly below average in the pre-test (-0.20) 

and her performance dropped in the post-test (-0.66). Both Julia and Tina had 

experienced emotional conflicts with their family members when they tried to help 

them with mathematics. 

Interviewer:  You mentioned that your father helped you during high school. 

Julia:  Yes, somewhat, but, it's not, not very much, it's a bit like, you know, a 
difficult situation, because you so easily lose your nerves then 



Hannula, Kaasila, Pehkonen & Laine 

PME31―2007 3-6 

Interviewer:  Uhm 

Julia:  both do, and if, if you start, if you really try to help, my older sister also 
sometimes, she was one year older, and she was really good in math, too, 
so she, like, also tried to help sometimes, so it, it became so easily a fight. 

Tina:  ...and because he [father] has never been good in school, so when he has 
tried, then, during elementary school to teach me, so, I lost my nerves a 
little bit, because he doesn't really know it himself, or he used words that 
were no longer used at school ...  

There was another interesting regularity among those who achieved well in the pre-

test and were able to improve for the post-test. Many of those had strong 

mathematical role models whom they respected a lot.  

Interviewer: Why do you think that you can [do mathematics well]. 

Pekka:  Don't know, hah, must be, well, genes do have their own effect. 

Interviewer:  Uhm. 

Pekka:  And then, must be father, father in his time, well, made me play and 

Interviewer:  Uhm 

Pekka:  and think and 

Interviewer:  Uhm 

Pekka:  he was a carpenter and mastered numbers and [...] from there has come 
the positive side... 

 

DISCUSSION 

The qualitative data revealed six major topics that appeared in students' narratives of 

home and mathematics: 1) getting help, 2) role models, 3) value of mathematics, 4) 

encouragement/demands, 5) independence, and 6) helping siblings. Each of these 

topics showed variation between students. However, it is difficult to tease out the 

causality. How much these differences in home experiences were due to the different 

affect and achievement of the student? How much these differences influenced the 

different development of affect and achievement of students? Nevertheless, the data 

does suggest some explanation to the different advancement of high achieving 

students.  

One might hypothesize that the regression of encouraged high-achievers might relate 

to them leaving home and lacking the support they had earlier had. In this data there 

was no evidence for that. On the contrary, those two students who had a relative 

decline in their advancement from high pre-test score to average post-test had both 

experienced emotional confrontation with their family when they had been helped 

with mathematics during school years. This might be related with an inability to 

utilize the positive effect of working with a peer or acting as a tutor, which was 

identified as an important facilitator for development among teacher students  

(Kaasila, Hannula, Laine & Pehkonen, In Print).  
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On the other hand, among the students who had scored well in pre-test and advanced 

in the post-tests, many had strong positive role model at home and mathematical 

competence seemed to form an important aspect of their identity. As they had already 

internalised a positive disposition towards mathematics, they possibly did not 

experience any strong encouragement from home. 
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MISTAKE-HANDLING ACTIVITIES IN THE MATHEMATICS 

CLASSROOM: EFFECTS OF AN IN-SERVICE TEACHER 

TRAINING ON STUDENTS’ PERFORMANCE IN GEOMETRY 

Aiso Heinze and Kristina Reiss 

Institute of Mathematics, University of Munich, Germany 

 

In a quasi-experimental study with 619 students from 29 classrooms (grades 7/8) we 

investigated the effects of a teacher training on teachers’ mistake-handling activities 

and students’ learning of reasoning and proof in geometry. Teachers of the experi-

mental group classrooms received a combined training in mistake-handling and 

teaching reasoning and proof, whereas the teachers of the control group classrooms 

only took part in a training on teaching reasoning and proof. Their students 

participated in a pre- and post-test. Moreover, they were asked to evaluate how the 

teachers handled their mistakes. Our findings show that the teacher training was 

successful: the teachers of the experimental group classrooms changed their 

mistake-handling behavior and, compared to the control group classrooms the 

students in the experimental group performed significantly better in the post-test. 

INTRODUCTION 

For many students and teachers mistakes are associated with negative feelings. Despite 

the fact that „mistakes are the best teachers“, according to a well-known everyday 

proverb, teachers and students hardly take advantage of mistakes in class. In this paper 

we present a study on an in-service teacher training regarding the role of mistakes for 

the learning process. The findings indicate that students’ mathematics achievement 

benefits from a change in their teachers’ behavior regarding mistakes. 

THEORETICAL FRAMEWORK 

Our study particularly takes into account the work of Oser and colleagues on the role of 

mistakes for learning processes (Oser & Spychiger, 2005). Accordingly, we postulate 

that mistakes are necessary to elaborate the individual idea about what is false and 

what is correct. According to the theory of negative expertise individuals accumulate 

two complementary types of knowledge: positive knowledge on correct facts and 

processes, and negative knowledge on incorrect facts and processes (Minsky, 1983). 

Learning by mistakes is regarded as the acquisition of negative knowledge. Detecting 

one’s own errors helps to revise faulty knowledge structures. Storing past errors and 

the cues that predict failure in memory may prevent individuals from repeating 

mistakes (Hesketh, 1997).  

Mistake-handling in mathematics classroom – empirical results 

In particular, in the 1970s and 1980s many research studies were conducted in 

mathematics education analyzing underlying patterns of students’ mistakes in different 
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mathematical domains (e.g., Radatz, 1979). This research followed a diagnostic 

perspective and aimed at the identification of reasons for typical students’ mistakes.  

Beyond this diagnostic research approach, there are only few research studies on 

mistake-handling activities and on the question what might be a promising way to deal 

with mistakes in the mathematics lessons. Video based research in different countries 

indicates that students’ mistakes appear only rarely during classwork in mathematics 

lesson (cf. Heinze, 2005). Findings of a video study in Germany show that the average 

number of mistakes made publicly in a grade 8 geometry lesson dealing with reasoning 

and proof is less than five mistakes in 45 minutes. This is surprising since nearly all 

teachers in the study followed a discursive teaching style (teacher question, student 

answer, teacher feedback). According to questionnaire based studies in Switzerland 

and Germany mistake-handling activities of mathematics teachers are evaluated 

comparatively positive by their students (Oser & Spychiger, 2005; Heinze, 2005). In 

particular, students hardly fear making mistakes in “public” lesson phases. Hence, the 

conditions for integrating error management in the mathematics classroom are 

comparatively good. Nevertheless, it seems that teachers do not use errors as a chance 

to create learning opportunities for their students; instead they are following an 

implicit behavioristic style that avoids the occurrence and discussion of mistakes. 

Hence, it is not surprising that findings of Oser and Spychiger (2005) and Heinze 

(2005) show that Swiss and Germans students do not recognize the potential of their 

own mistakes in mathematics. 

Effectiveness of error management trainings 

Despite the fact that errors are regarded as important aspects for learning, research in 

mathematics education gives only few hints how to accomplish this task in the class-

room. An exception is the teaching experiment of the Italian group Garuti, Boero and 

Chiappini (1999) for detecting and overcoming conceptual mistakes. They used the 

“voice and echoes game” as a special approach to deal with conceptual mistakes. An 

alternative way to use mistakes as learning opportunities is described in the research 

program of Borasi (1996). She conducted a series of case studies and developed the 

strategy of capitalizing on errors as springboards for inquiry. Her taxonomy describes 

three levels of abstraction in the mathematics discourse (performing a specific 

mathematics task, understanding technical mathematics content and understanding the 

nature of mathematics) and three stances of learning (remediation, discover and 

inquiry). For each of the possible combinations of levels and stances she gives a 

description how errors can be used productively in the specific situation. As Borasi 

(1996) summarizes the case studies and teaching experiments provide “anecdotal 

evidence” that learners can benefit from her approach.  

There is hardly any quantitatively oriented empirical research about the effectiveness 

of error management trainings for mathematics classrooms. However, research in other 

disciplines indicates that error trainings are rather successful. Studies on the 

acquisition of word processing skills for example give evidence that a training in error 

management improves performance significantly better than a training based on error 
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avoidance (Nordstrom, Wendland, & Williams, 1998). During error management 

training, the learners commit errors, either themselves (active errors) or by watching 

someone else commit errors (vicarious errors), and receive feedback about their 

mistakes. In error avoidance training, however, the learner is prevented from 

experiencing errors; in a behavioristic manner the aim of training is to allow learners to 

practice skills correctly and focus on the positive. Similar findings concerning the 

positive role of mistakes for the learning process are reported by Joung, Hesketh, and 

Neal (2006) for a training program with fire fighters.  

Error management activities as part of the problem solving process 

In the mathematics classroom errors and particularly the individual error management 

may play different roles depending on the mathematical activities. If a learner wants to 

acquire a principle, a formula, or an algorithm, she or he has a clear learning goal: 

something has to be memorized and understood, such that one can apply this 

knowledge in specific tasks. Reasoning and proof differs. According to the model of 

Boero (1999) the proving process consists of different stages in which the exploration 

activities play an outstanding role. Exploring a given problem situation, investigating 

given assumptions, retrieving suitable facts from memory etc. should be based on 

heuristic strategies. Here we have a situation of a systematic trial-and-error approach, 

which requires a permanent evaluation and drawing consequences from mistaken 

working steps. Hence, the ability to manage errors can be considered as a particular 

aspect of metacognition and is a prerequisite for solving complex reasoning and proof 

tasks. 

RESEARCH QUESTIONS 

As outlined in the previous sections we consider mistakes as a necessary part of the 

learning process. Moreover, error management skills are of particular importance 

when applying heuristic strategies in the mathematical problem solving process. As 

empirical findings for Germany indicate teachers and students hardly use mistakes as 

learning opportunities. Error management trainings in other domains show positive 

effects for the learning process. In the present study we are interested whether a special 

in-service teacher training on mistake-handling in mathematics classroom has positive 

effects on students’ performance. Presently, we are not aware of empirical studies 

about the effectiveness of a teacher training in this field. Since we expect that error 

management abilities foster particularly problem solving competencies we focus 

particularly students’ performance in reasoning and proof in geometry. 

In our study we address the question to what extent a teacher training about the role of 

mistakes for the learning process in mathematics has an effect on  

(1) students’ perception regarding their teachers’ mistake-handling activities in 

mathematics lessons and  

(2)  students’ performance in geometric reasoning and proof. 
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DESIGN OF THE STUDY 

The sample consists of 619 students (311 female and 308 male) from 29 grade 7 

classrooms (about 13 years old students). At the end of grade 7 a pre-test on geometry 

(basic skills, reasoning and proof) and questionnaires on motivation regarding 

mathematics and the mistake-handling activities were administered. Based on the 

results in the pre-test and the motivation questionnaire the classes were assigned to an 

experimental (10 classes, N = 240) and to a control group (19 classes, N = 379).  

At the beginning of grade 8 the teachers of the sample classes took part in an in-service 

teacher training. The training for the experimental and the control group were 

organized separately at the university and took two days for each group. The teachers 

of the experimental group received a training about mistakes and in teaching reasoning 

and proof, whereas the teachers of the control group had a training in reasoning and 

proof supplemented by aspects of the new German educational standards for 

mathematics. The training about mistakes included aspects of negative expertise, 

students’ learning by mistakes, and the productive use of mistakes in the mathematics 

classroom. The training about reasoning and proof encompassed a model of the 

proving process, teaching material regarding reasoning and proof and typical student 

problems in this field. After the first training day the teachers got as an exercise to 

analyze their own instruction with respect to certain criteria. Their observations were 

included in the second part of the training two weeks later. 

Two months after the teacher training, the students of both groups took part in a 

post-test on reasoning and proof in geometry and they filled in the questionnaire on 

mistake-handling activities again. During the two months among others the regular 

teaching unit on reasoning and proof in geometry was conducted by the teachers. 

The pre- and post-test on reasoning and proof in geometry are approved instruments 

from our own research (e.g. Reiss, Hellmich, & Reiss, 2002). They contain curriculum 

related items for example on properties of triangles and quadrangles and congruence 

theorems. Data concerning the students’ perspective on mistake-handling activities in 

the classroom were collected via an approved questionnaire adapted from Spychiger et 

al. (1998). Students had to rate statements on a four point Likert scale (see examples in 

table 1). 

RESULTS 

Students’ perception of mistake-handling activities 

A principal component analysis led to four factors for the 27 items of the 

mistake-handling questionnaire explaining 51% of the variance (see table 1).  

Though there are four common items loading on the two factors concerning the 

affective and cognitive aspects of the teacher behaviour in mistake situations (e.g., Our 

mathematics teacher is patient when a student has problems to understand.), we 

decided to distinguish between these two aspects of teacher behavior. By the screeplot 

criterion of the principal component analysis the four factor solution was better than 
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the three factor solution. However, one must have in mind that these two factors base 

partly on the same items. In Spychiger et al. (1998) a three factor solution was 

preferred with only one factor for the teacher behavior. 

The results of the questionnaire indicate that students were not afraid of making 

mistakes and appreciated their teachers’ affective attitude. The individual use of 

mistakes and teacher behavior regarding cognitive aspects were rated moderately by 

the students (see table 2). 

Mean (SD) 

individual use 

of mistakes 

positive  

teacher 

behavior 

affective 

positive  

teacher 

behavior 

cognitive 

fear of making 

mistakes 

pre-test     

total 2.47 (0.56) 3.06 (0.71) 2.79 (0.71) 1.85 (0.61) 

experimental 2.48 (0.55) 2.87** (0.77) 2.65** (0.72) 1.97** (0.63) 

control 2.47 (0.56) 3.17** (0.64) 2.88** (0.69) 1.78** (0.59) 

post-test     

total 2.49 (0.57) 3.20 (0.63) 2.95 (0.69) 1.79 (0.59) 

experimental 2.56* (0.57) 3.32** (0.53) 3.09** (0.59) 1.79 (0.56) 

control 2.45* (0.57) 3.12** (0.68) 2.86** (0.73) 1.79 (0.61) 

Likert scale: 1=strongly disagree, 2=disagree, 3=agree, 4=strongly agree 

* p < 0.05   ** p < 0.01 

Table 2: Mistake-handling in students’ perception – pre- and post-test results. 

Though the experimental group and the control group were parallelized after the 

pre-test with respect to their achievement in geometry and their motivation towards 

mathematics, they significantly differed in their perception of mistake-handling 

Factor Item example 
Reliability 

(Cronbach’s α) 

Individual use of mistakes 

for the learning process 

In mathematics I explore my mistakes 

and try to understand them. 

0.83 (9 items) 

Affective aspects of the 

teacher behavior in mistake 

situations 

Sometimes our math teacher gets an 

appalled face when a student makes a 

mistake. 

0.88 (9 items) 

Cognitive aspects of the 

teacher behavior in mistake 

situations 

If I make a mistake in maths lessons my 

teacher handles the situation in such a 

way that I can benefit. 

0.87 (7 items) 

Fear of making mistakes in 

the mathematics lessons 

I become scared when I make a 

mistake in mathematics classroom. 

0.74 (6 items) 

Table 1: Factors of the mistake-handling questionnaire. 
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situations. Students of the control group judged their teachers as more positive than the 

students of the experimental group. However, in the post-test the students of the 

experimental group rated their teachers significantly better in the mistake question-

naire than the students of the control group. In particular, there was hardly a change for 

the control group regarding students’ perception of mistake-handling situations (table 

2). The development from pre- to post-test (as difference) differed significantly 

between experimental group and control group for the components “affective aspects 

of the teacher behavior in mistake situations” (t(617) =  8.325, p < 0.001, d = 0.67), 

“cognitive aspects of the teacher behavior in mistake situations” (t(617) =  7.049,  

p < 0.001, d = 0.57) and “fear of making mistakes” (t(617) = -3.942, p < 0.001),  

d = 0.32).  

Though the control group teachers were rated better in the pre-test than the 

experimental group teachers, they were judged worse in the post-test. The results show 

that the teacher training was successful: the teacher behavior changed and became 

apparent to the students.  

Students’ performance in reasoning and proof 

Both geometry tests on reasoning and proof consist of items of three competency 

levels: (1) basic knowledge and calculations, (2) one-step argumentation and (3) 

argumentation with several steps (see Reiss, Hellmich, & Reiss, 2002, for details). As 

described previously experimental and control group were parallelized, i.e. there is no 

significant difference between students’ pre-test results, neither for the total test score 

nor for the results of the different competency levels (see table 3). 

Mean (SD) 

Score 

(percentages) 

Items 

competency 

level 1 

Items 

competency 

level 2 

Items 

competency 

level 3 

Test score 

pre-test     

total 79.3 (19.5) 62.8 (36.4) 26.1 (24.1) 57.4 (18.9) 

experimental 79.0 (19.3) 66.1 (37.1) 26.0 (24.2) 58.1 (18.8) 

control 79.4 (19.6) 60.7 (35.8) 26.1 (24.0) 57.0 (18.9) 

post-test     

total 74.0 (23.0) 56.7 (23.4) 26.5 (22.9) 52.0 (17.6) 

experimental 74.3 (22.9) 59.0* (21.1) 29.6** (21.9) 53.9* (17.0) 

control 73.9 (23.1) 55.2* (24.7) 24.5** (23.3) 50.9* (17.8) 

* p < 0.05   ** p < 0.01 

Table 3: Students performance in the geometry pre- and post-test. 

For the post-test after the treatment we observe significant differences between the two 

groups (experimental group M = 53.9%, control group M = 50.9%, t(617) = 2.08, p < 

0.05, d = 0.17). The better improvement of the experimental group was mainly based 

on geometrical proof items on competency level 3 (control group: M = 24.5%, 

experimental group M = 29.6%, t(617) = 2.69, p < 0.01, d = 0.22). This means that 
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students of the experimental group achieved their better results particularly for the 

complex multi-step proof items. 

DISCUSSION 

In our study we trained in-service teachers regarding the role of mistakes in the 

teaching and learning process. Our findings indicate that this teacher training was 

successful from two points of view: On the one hand, the teacher of the experimental 

group changed their mistake-handling behavior in such a manner that it was 

recognized by the students. The effect sizes indicated moderate effects. On the other 

hand, the performance of the students in the experimental group improved significantly 

better in comparison to that of the control group. This improvement is mainly based on 

a better performance in solving geometrical proof items, i.e. items on a high 

competency level. 

Analyzing the data in detail we can observe, that there is an improvement of the 

affective and cognitive teacher behavior in the perspective from the students. As 

described before these two factors base partly on common items, however, if we 

consider only the specific affective or cognitive related items we can observe the same 

tendency. Hence, it seems that the in-service teacher training has a positive effect for 

the teacher behavior which is noticed by the students. 

In spite of this change in the teacher behavior we cannot observe a clear improvement 

in the self reported students’ behavior concerning their own mistakes. There is no 

significant difference in the pre-post-test development between students of the 

experimental and the control group. It seems that the effect of the teacher training is 

restricted to a modification of the teacher reaction in mistake situations. There is no 

clear evidence for a successful further step: the instruction of students how to use 

mistakes as individual learning opportunities. 

Investigating the development of the achievement in geometric reasoning and proof we 

see that students of the experimental group outperformed their mates from the control 

group. The advantage of the experimental group particularly goes back to the complex 

proof items in the pre- and post-tests; however, we can observe only a small effect size 

(d = 0.22). Though we did not control the mathematics instruction in the 29 classes, we 

hypothesize that this effect is particularly influenced by the improved 

mistake-handling activities of the teachers. Since the teachers in the experimental 

group were more open-minded about students’ mistakes in mathematics classroom, a 

better improvement of students’ achievement for complex mathematics tasks is in line 

with the theoretical assumptions. Moreover, teachers from the experimental and the 

control group got the same teacher training on reasoning and proof and they taught 

mathematics on the basis of a detailed prescribed curriculum, i.e. there was a clear 

frame for their teaching. 

The results of our intervention study give evidence that an in-service teacher training 

on mistake-handling activities has positive effects on the mathematics classroom. 

Nevertheless, further research studies are necessary to optimize the outcome of such 
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training sessions. In particular, one has to think about methods how to guide students to 

use their individual mistakes for improving their learning in mathematics. The creation 

and evaluation of specific learning material for this purpose may be one possible way. 
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GENDER SIMILARITIES INSTEAD OF GENDER DIFFERENCES: 

STUDENTS’ COMPETENCES IN REASONING AND PROOF 

Aiso Heinze, Stefan Ufer and Kristina Reiss 

Department of Mathematics, University of Munich 

 

The discussion of gender differences in mathematics competition has a long tradition, 

being challenged recently by Hyde’s gender similarities hypothesis. In a reanalysis of 

four quantitative empirical studies with 2809 students of lower secondary schools we 

investigated performance in geometry proof from a differential perspective. Only a few 

significant differences could be found in proof performance as well as in growth of 

achievement within this field. They have only small effect sizes and do not show a 

uniform tendency in favour of one sex. 

THEORETICAL BACKGROUND 

Gender similarities versus gender differences 

Many approaches in gender research presume differences between males and females 

not only in biological, but also in psychological respects. This assumption is supported 

by a large number of studies in the past decades. In contrast to this view Hyde (2005) 

stressed the “gender similarities hypothesis”, based on a meta-analysis of 46 

meta-analyses: 

The gender similarities hypothesis holds that males and females are similar on most, but 

not all, psychological variables. That is, men and women, as well as boys and girls, are 

more alike than they are different. (Hyde 2005, p. 581) 

In her analysis, Hyde argues that it does not suffice to identify statistical significant 

differences, but that also the relevance of these differences must be taken into account. 

She uses Cohen’s distance measure d to describe the strength of the effects found. The 

result of her analysis is that most of the described effects are small: 

In terms of effect sizes, the gender similarities hypothesis states that most psychological 

gender differences are close-to-zero (d < 0.10) or small (0.11 < d < 0.35), a few are in 

moderate range (0.36 < d < 0.65) and very few are large (0.66 – 1.00) or very large (d > 

1.00). (Hyde 2005, p. 581) 

It is important to note that Hyde does not negate differences between sexes. She argues 

for a realistic view on differences and similarities. 

With respect to mathematical achievement several investigations over the past decades 

suggest a trend of decreasing gender differences. First indicated by Senk and Usiskin 

(1983), Friedman (1989) confirmed in a meta-analysis of 98 studies from the years 

1974 to 1987 that “sex difference in favor of males is decreasing over short periods of 

time” (Friedman, 1989, p. 205). Hyde, Fennema and Lamon (1990) found similar 

results in a meta-analysis of over 100 studies. 
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For Germany this trend could not be found by Klieme (1997). He conducted a 

meta-analysis similar to the one of Hyde, Fennema and Lamon (1990) with more than 

90 studies, but he could not replicate the results. 

Mathematics achievement and gender in Germany 

Several large scale studies examined mathematics achievement from a differential 

point of view in Germany during the past years. Some of them were coupled with 

international studies (TIMSS, PISA), some focused on single states (LAU, MARKUS, 

QuaSUM). Summarizing, these studies showed significant effects in favour of the boys, 

but effects are small for students of lower secondary classes. In upper secondary 

classes gender differences increase up to moderate effect sizes. Taking into account the 

particular school track gives a more detailed picture. For schools aiming at higher 

education (the German Gymnasium) the effects are larger for lower and upper 

secondary classes. 

MATHEMATICAL PROOF AND ARGUMENTATION 

Why investigate argumentation and proof competence in view of gender effects? 

Viewing mathematical reasoning and proof as a special form of mathematical problem 

solving we can identify some basic competences required for these activities. For 

problem solving Schoenfeld (1992) specifies the following factors: Knowledge of 

mathematical facts, knowledge on problem solving strategies, metacognitive abilities 

and affective factors such as beliefs, interest and motivation. In the case of reasoning 

and proving an additional requirement is knowledge on the specifics of mathematical 

argumentation. Moreover the interplay of these competences must be controlled to 

solve proof-problems successfully (Weber 2001). There exist several models to grasp 

the complexity of the proving process (e.g. Boero 1999), showing the spectrum of 

competences required. Also international studies like PISA and TIMSS indicate that 

proving is a mathematical competence asking for skills in several areas and, moreover, 

a high level of general mathematical competence. 

In addition to the necessary high level of competence there is a second reason for 

choosing proving skills as subject for gender studies. The individual ability of 

mathematical argumentation, especially to do geometry proofs, depends essentially on 

learning processes in mathematics classes. Mathematical reasoning is not part of 

student’s every-day life, but appears almost exclusively within mathematics lessons. 

Senk and Usiskin (1983, p. 198) argue that this moderates the influence of gender 

differences via the students’ interest in the measured competence. 

Summarizing, we can view construction of proofs in geometry as a good indicator for 

learning processes regarding general mathematical performance. This means that 

studies of gender differences would be particularly interesting if they produce different 

results for geometrical proof competence and basic mathematical competence. 
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Studies on mathematical reasoning and proof 

There are few quantitative empirical studies focussing mathematical reasoning and 

proof which deal exclusively with the aspect of gender differences. Most general 

studies, on the other hand, provide separate data for female and male students, making 

comparison possible. 

Several studies in lower secondary schools were conducted by Celia Hoyles and 

colleagues in Great Britain in the project “Justifying and proving in school 

mathematics”. About 2500 grade 10 students were tested for their proof competence. 

While no gender differences were found for geometrical proofs, there occurred a 

significant difference in favour of the girls for algebraic proofs. A detailed analysis 

showed that also the way of argumentation differed for algebraic proofs between 

female and male students (Healy and Hoyles, 1999). 

In a follow-up project (Longitudinal Proof Project) following students from grade 8 to 

10 these results were confirmed (sample sizes 1500 to 2800). No difference between 

sexes was found in grades 8 and 10, but in grade 9 the girls scored better for algebraic 

proofs (Küchemann and Hoyles, 2003). This study also used a test for general 

mathematical competences in grades 8 and 9. Controlling these basic competences the 

girls achieve better results in the proof test than the boys. 

Another study was conducted by Senk and Usiskin (1983) in the USA as a part of a 

larger project investigating the learning of geometry. Almost 1400 senior high school 

students at the ages of 14 to 17 years were examined using three sets of geometrical 

proof problems (e.g. congruence geometry). No significant differences in solution 

rates were found for all three problem sets. It should be noted that more female 

students were found in courses for weak students and more male students in courses for 

high achieving students. This differentiation was confirmed by a geometry test in the 

study. Calculating results under control of the geometry test showed a significant but 

small advantage for the girls in one of the three problem sets (p < 0.05, d = 0.23). 

Cronje (1997) reports a study on proving from South Africa. She presented a set of 

proof-problems from Euclidean geometry to grade 11 students from five high schools. 

She could not find gender differences in test performance. 

Using proof problems in the context of geometry as an indicator for general 

mathematical competence it cannot be neglected that there is a well established 

advantage for male students regarding space perception. This factor is often used to 

argue for gender differences in mathematics achievement and in particular regarding 

geometry. It is possible that this effect causes significant differences between sexes 

that are not due to the pure mathematical learning process. 

(…) one might expect significant sex differences in performance on doing geometry proof, 

which requires some spatial ability, qualifies as a high-level cognitive task, and is 

considered among the most difficult processes to learn in the secondary school 

mathematics curriculum. (Senk and Usiskin, 1983, p. 188) 
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Nevertheless Senk and Usiskin (1983) could not find consistent patterns of gender 

differences that would support this hypothesis. 

All in all the empirical studies show that girls do not score worse than boys in 

geometrical proof problems, in spite of lower general mathematical performance. 

These studies were conducted during the last twenty years. As we cannot assume that 

gender differences in mathematics competence are stable over time a comparison is 

problematic. 

RESEARCH QUESTIONS AND DESIGN OF THE STUDY 

Research Questions 

The state of research poses the question whether sex-specific differences in proof 

competence can be found in Germany. As described above, there are differences in 

general mathematics performance on lower secondary level if specific tracks of school 

(e.g. Gymnasium) are considered. It is an open question if these differences do also 

occur for proof competence. In this article we address the following questions: 

• Are there differences in geometrical proof competence between female and 

male students at the beginning of lower secondary level? 

• Does sex influence the growth of these competences during instruction on 

reasoning and proof? 

For both questions we consider students of schools aiming at higher education 

(Gymnasium), on the one hand because larger effects can be expected here and on the 

other hand because proof and reasoning play a more important role in Gymnasium than 

in other school tracks. 

Sample and methodology 

The investigation is based on a reanalysis of data available from four studies from the 

past six years. These are quantitative-empirical studies within the priority program 

“quality of education in school” of the German Research foundation (c.f. Heinze, Reiss 

and Groß, 2006) with German Gymnasium students (age 13-14 years). Basic data of 

the sample can be found in table 1. 

 study 1 study 2 study 3 study 4 

sample size 751 527 232 706 1120 870 

female 407 300 118 331 552 459 

male 344 227 114 375 568 411 

grade 7
th
 

end 

8
th
 

middle 

8
th
 

beginning 

7
th 

end 

7
th 

end 

8
th 

middle 

month of 

survey 

june 

2001 

december 

2001 

september 

2003 

july 

2004 

july 

2005 

december 

2005 

Table 1: Sample data. 
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In all studies data was collected at two dates. Students in studies 2, 3 and 4 had a 

special treatment on geometrical reasoning and proof between first and second test. In 

study 4 the treatment was the same for all students, studies 2 and 3 evaluated different 

learning environments. Sample sizes were too small for a reliable gender-differentiated 

analysis for studies 2 and 3, so these second tests were excluded from the reanalysis. In 

study 1 no treatment was applied, but the lessons between the tests were videotaped 

and analysed. 

The first test was the same for all four studies. It consisted of problems testing basic 

knowledge in geometry and problems on reasoning and proof. The problems on basic 

knowledge dealt with elementary concept knowledge and application of simple rules. 

Proof items asked for argumentations with one or more steps. The items were chosen in 

view of the curriculum and standard school books for grade 7 (e.g. sum of angles in a 

triangle). In studies 1 and 4 the second test took place in the middle of grade 8 and 

resembled the first test. The content of the items was adjusted to the curriculum of 

grade 8 (e.g. congruence theorems). Some anchor items were identical or similar for 

both tests. 

The tests are based on a competence model for reasoning, argumentation and proving 

(Reiss, Hellmich and Reiss 2002) defining three theoretical competence levels. 

Problems on level I cover basic qualifications and the application of simple rules. On 

level II and level III there are argumentation problems requiring one step or more than 

one step of reasoning, respectively. All studies confirmed the theoretical model. 

RESULTS 

Table 2 lists the results of the first set of tests. It contains sample data, the mean M of 

the overall score (percent of maximum score) and the standard deviation (sd). 

 study 1 study 2 study 3 study 4 

 female male female male female male female male 

 N 407 344 118 114 331 375 552 568 

 m 47.5 50.1 59.4 55.1 60.3 58.3 56.2 53.8 

 sd 19.8 19.4 17.4 16.7 18.1 19.4 18.9 19.4 

 p (t-test) 0.069 0.056 0.172 0.039 

Table 2: Results of the first test. 

Study 1 did not show effects of gender difference for the overall score. Differentiating 

the three levels of competence shows significant effects in favour of the boys on 

competence level I (basic problems, p < 0.01, d = 0.22) and on competence level III 

(argumentation with more than one step, p < 0.05, d = 0.14). Both effects are small. In 

study 2 there were no significant differences between the performance of girls and 

boys at all, concerning average score as well as single competence levels. Study 3 

revealed a small significant difference in favour of the girls on competence level II (p < 
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0.001, d = 0.22). Results of study 4 showed a significant difference in favour of the 

girls for the overall score (p < 0.05, d = 0.12) and for competence level II (p < 0.001, d 

= 0.20). 

As described above data of the second test is only considered for studies 1 and 4. 

Results can be found in table 3. Study 1 in grade 8 did not show any significant gender 

differences. On competence levels II and III the performance of girls and boys was 

almost identical. 

 study 1 study 4 

 female male female male 

 N 300 227 459 411 

 m 37.1 38.0 50.3 51.4 

 sd 16.0 15.0 16.9 17.8 

 p (t-test) 0.781 0.110 

Table 3: Results of the second test. 

In Study 4 as well no effects for the overall performance could be found. Considering 

only items on competence level I uncovers a significant, but small effect (p < 0.01, 

d = 0.18) in favour of the boys. 

Altogether in the overall performance of female and male students no relevant 

differences could be found. As regards competence levels, there are significant gender 

differences in only five of 18 cases, twice in advantage of the girls, three times in 

advantage of the boys. The values of d vary between 0.12 and 0.22, showing small 

effects of little practical relevance. 

Results on the growth of achievement 

The growth of achievement in studies 1 and 4 was determined based on results of the 

first and the second test. Using linear regression an average growth was modelled and 

the individual difference was calculated for each test person (z-standardized residuals). 

As table 4 shows no significant difference was established in both studies. 

 study 1 study 4 

 female male female male 

 N 297 226 389 355 

 mean residual 0.0017 -0.0017 -0.0080 0.0087 

 sd 0.1431 0.1343 0.1470 0.1370 

 p (t-test) 0.512 0.362 

Table 4: Growth of achievement in studies 1 and 4. 
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DISCUSSION 

The results of the reanalysis show significant gender-specific effects in geometric 

proof performance only in one of six tests (first test in study 4). Breaking down the data 

into different levels of competence reveals significant effects in favour of both female 

and male students. If the corresponding values of the effect size d (0.12 – 0.22) are 

taken into account all effects turn out to be small. The effects found are of small 

practical relevance and moreover they do not appear consistently in favour of one sex. 

The results confirm expectations in view of the studies described at the beginning of 

the article. They support the hypothesis that there are no relevant gender differences in 

geometric proof competence on lower secondary school level. This is remarkable as 

our sample consisted of Gymnasium-students, the school track in which moderate 

differences were found for general mathematical competences in the past. 

A reason for these contrasting results is proposed by Senk and Usiskin (1983). They 

assume that students learn how to prove exclusively in mathematics lessons, away 

from out-of-school influences. Thus girls and boys have the same starting conditions in 

this area. In other areas of mathematics competence they see an advantage for boys 

gaining informal experience with mathematical contents out of school. For the choice 

of measures for mathematical competence they find the following pattern: 

(…) the more an instrument directly measures students’ formal education experiences in 

mathematics, the less the likelihood of sex differences. (Senk and Usiskin, 1983, p. 198) 

This explanation may be suitable for the situation in our study. Nevertheless we only 

considered students of a specific age at lower secondary level (grade 7/8) attending a 

school aiming at higher education. Thus transfer of our results to other situations is 

problematic. 

Though we found no relevant differences between sexes in performance it should be 

noted that these findings cannot be transferred to all aspects of mathematics classroom. 

It is obvious that there are differences between girls and boys in the learning process. 

Jahnke-Klein (2001) notices that the form of discourse dominating classroom 

interaction in Germany does not meet the requirements of female students. Following 

her they need more support during lessons and profit from repeated explanations, sets 

of similar problems – with the possibility to evaluate their own results – and repetition 

of difficult homework problems in school. Affective factors – caused by individual or 

social processes – are also out of focus of our investigation (Hyde, Fennema, Ryan et. 

al. 1990). 

The described reanalysis shows that also in the specific area of proof and reasoning 

female and male students show similar performance. In view of gender differences in 

basic mathematical achievements found by other studies it is an open question which 

exact processes lead to the balance in the field of reasoning and proof and if such 

effects can also be found for other fields. 
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STUDYING LESSON STRUCTURE FROM THE PERSPECTIVE 

OF STUDENTS’ MEANING CONSTRUCTION: THE CASE OF 

TWO JAPANESE MATHEMATICS CLASSROOMS 

Keiko Hino 

Utsunomiya University 

 

International comparisons have shown different structural features of mathematics 

lesson across countries. This paper explores the lesson pattern identified in Japanese 

lessons from the side of students. An attention is paid to the role of Jiriki-Kaiketu 

activity - Solving Problem by Oneself - in students’ construction of mathematical 

meaning. Two major roles are found from quantitative and qualitative analyses of LPS 

data. On the one hand, Jiriki-Kaiketsu serves as a time in which puzzlement, questions 

and conjectures arise within the students. On the other hand, it enables students to 

make sense of the development of their work that followed. The paper also discusses 

influences of organization of lesson on students’ meaning construction by drawing on 

observations of teacher’s careful management of students’ thinking and some realities 

of students’ difficulties. 

INTRODUCTION AND BACKGROUND 

The TIMSS video study identified the lesson patterns as cultural scripts for teaching in 

Germany, Japan and the USA (Stigler & Hiebert, 1999). They identified Japanese 

pattern of teaching a lesson as a sequence of five activities: Reviewing the previous 

lesson, Presenting the problem for the day, Students working individually or in groups, 

Discussing solution methods, and Highlighting and summarizing the major points (p. 

79). Here, a distinct feature of Japanese lesson pattern, compared with the other two 

countries, was that presenting a problem set the stage for students to work on 

developing solution procedures. In contrast, in the USA and in Germany students work 

on problems after the teacher demonstrated how to solve the problem (USA) or after 

the teacher directed students to develop procedures to solve the task (Germany). 

This feature of pattern of lesson is supported by pedagogical principles that are shared 

by teachers in Japan. We have the vocabulary with which to describe the practice of 

teaching in class. One of them, which is relevant to the pattern, is the term 

‘Jiriki-Kaiketsu.’ Jiriki-Kaiketsu (J-K) means ‘solving problem by oneself,’ in which 

students work on the problem prepared by teacher to introduce new content. J-K can be 

interpreted as seatwork activity because it is the time for students to work 

independently on assigned tasks. Still, important conditions of J-K are that the problem 

is the key problem in the lesson and that student’s work is presented and discussed later 

for the purpose of introducing new content. 

The purpose of this paper is to investigate the role of J-K in students’ construction of 

mathematical meaning in the lessons. By using data that were gathered to obtain 
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information on students in the lessons, an attempt is made to grasp the meaning of J-K 

activity in the eyes of students. There are three reasons for this investigation. First, 

there is not enough information on the side of students under specific structural 

features of lesson. Articulation of different lesson patterns has produced researchers’ 

interest in pedagogical decisions underlying the structures (e.g., Stigler & Hiebert, 

1999). A missing part is the examination of students who are learning mathematics in 

the classroom where teacher’s instructional intentions are reflected (Fujii, 2002). 

Interest of this paper is meaning and role of J-K from the side of students. 

Second, there is a growing interest in the process of construction of mathematical 

meanings in the classroom. Different perspectives on understanding the meaning 

construction in the classroom have been presented. One important finding would be a 

reflexive relationship between individual students’ activity and social dimensions in 

the classroom (e.g., Cobb & Bauersfeld, 1995). However, mechanism of individual 

students’ meaning construction under constrains of social environment in the 

classroom is still an open question (Cobb et al., 1997; Waschescio, 1998). In this paper, 

by examining the real-time learning of individual students it is tried to reveal more 

about the relationship between the lesson organization and their process of learning.  

Third, Japanese pattern of lesson seems to reflect our emphasis on teaching 

mathematical thinking via ‘structured problem solving’ (Shimizu, 1999). In Japan, 

although the style of problem solving is widely spread, the problem of ‘deal letter’ has 

been pointed out (e.g., Tsubota et al., 2006). Therefore, it would be meaningful for us 

to analyse strong/weak points of the Japanese pattern of lesson by carefully collecting 

information about process and product of students’ learning. 

METHOD 

This study used data of Japanese mathematics lessons in two classrooms taught by two 

competent teachers. The data were collected in the Learner’s Perspective Study (LPS) 

(Clarke, 2006). The LPS generated data for ten consecutive mathematics lessons in 

each of three participating eighth grade classrooms. The reason for selecting these two 

classrooms out of three is that they fell more in line with the Japanese pattern of lesson 

(Hino, 2006). Throughout this paper, I will use J1 and J3 to refer to these sites. 

Mathematical topics that were dealt with in these sites are: linear functions (J1) and 

simultaneous equations (J3).  

As described by Clarke, data generation in LPS used a three-camera approach (Teacher 

camera, Student camera, Whole Class camera). Data included the onsite mixing of the 

Teacher and Student camera images into a picture-in-picture video record. This vide 

record was used in post-lesson interviews as stimulus for student reconstructions of 

classroom events. In post-lesson interviews, focus students were asked to identify and 

comment on classroom events of personal importance. In addition, photocopies of 

focus student written work, photocopies of textbook pages, worksheets or other written 

materials were also generated. These multiple sources of data were used in an 

integrated way to analyse students’ meaning construction in the two classrooms. 
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In the analysis, I put in order the activities of focus students (two students in each 

lesson) during the lesson. I summarized their thinking activities, especially in what 

way student started her/his work after the teacher presented the key problem, what 

activities the student engaged during J-K and how the student participated in 

whole-class discussion that followed. In order to catch student’s thinking and feeling 

during the lesson, it was found useful to use data from post-lesson interview. Therefore, 

I took classroom events of personal importance that students chose as targets and 

examined the role of J-K by developing categories by constantly comparing pieces of 

information (Glaser & Strauss, 1967).  

RESULTS 

J-K Viewed from Classroom Events of Student’s Personal Importance 

In the post-lesson video-stimulated interviews, focus students were given control of the 

video replay and asked to identify and comment upon classroom events of personal 

importance. These events were classified into four types, i.e., seatwork (including J-K) 

activity, whole-class discussion activity, instruction by teacher and other.  

Activities mentioned by students (%) J1 J3 

Seatwork activity (including J-K activity) 33 39 

Whole-class discussion 32 37 

Instruction by the teacher 35 18 

Other (unrelated to classroom activities) 0 6 

Table 1: Percentages of four categories of classroom events identified by students as 

personally important 

Table 1 shows the percentage of these types in J1 and J3. It shows that seatwork 

activity was one of the most important in the eyes of students. More detailed 

classification of events that belong to “seatwork activity” further shows that many 

students identified events of discussion with their neighbours as important. This is also 

the case in J-K. Informal discussion with their neighbours during J-K activity was as 

important as discussion with the teacher. Here, it is possible to say that the time for J-K 

was important as a time to exchange information and opinions with their neighbours 

and to think about the problematic points together. 

Moreover, table 1 shows that the percentages of “whole-class discussion” were also 

not small. Here, it is interesting to know that not a few students commented on the 

important points of the work presented by their friends by comparing or connecting 

them to their own methods and thinking: e.g.,  

IW: Um, as I took this way of DAINYU-HOU (substitution-method), and I didn’t notice 

there was another way, / … So, I took this way, but there were about five people who 

took another way of moving member of formula, … I noticed there was another way 

of solving that question, I mean, with KAGEN-HOU (addition-subtraction-method), 

… I thought everyone was using their brains well. (J3-L7) 
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It indicates that students remembered what they had thought about the problem during 

J-K activity and listened to the later development based on their thoughts. From this 

observation, it is also possible to say that J-K was important to the students because it 

serves as a basis to make sense of the development of the work that followed. 

Figure 1: Chronological relationship between time for J-K and classroom events of 

personal importance in J3 

Figure 1 shows the chronological relationship between the time for J-K and the 

classroom events of personal importance in J3. Locations of classroom events of 

personal importance students chose in the post-lesson interviews were noted by labels 

such as E1 and E2. Boxed labels show the events in which student either mentioned 

about the relationship between the work presented by their friends and her/his own 

work during J-K or can be interpreted as using her/his work during J-K as a knowledge 

base to make sense of the development in the whole-class activity that followed.  

Figure 1 and another figure on J1 show that teachers took time for J-K activity at least 

once in almost all the lessons. In addition to spending time on seatwork activity for 

exercises, when introducing new content, these teachers took time to let students think 

about the content beforehand. Boxed labels were scattered about the lessons. 

Nevertheless, if we looked at their locations carefully, they tended to be located around 

the J-K activity. Some boxed labels, such as those in Lesson 1 (Figure 1), were seen 

before the J-K activity. This is because students made connections with their work that 

they did in the previous lesson. It also shows that teachers were flexible in organizing 

the lessons by reflecting their planning of a sequence of several lessons as part of the 

teaching unit (Shimizu, 1999). Moreover, it is noticeable that students differ in their 

ways of participation in the classroom. For example, most of the classroom events of 
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personal importance chosen by TA (J1) were boxed and located after J-K activity, 

which suggested that she participated in the whole-class discussion via her work and 

thinking during J-K. On the other hand, SU and KOZ (J3)’s classroom events were not 

boxed and located either during J-K or what the teacher stated. Their primary concern 

was to solve problems before their eyes with the help of his neighbours and the teacher.  

An Overview of Meaning Construction by Individual Students via J-K Activity 

Some results of qualitative analysis are described here. For reasons of space, I only 

give an overview of two categories generated by data. 

Students noticed differences in thinking between their friends and their own. 

After J-K activity, both teachers spent time for students’ presenting their solutions and 

examining/discussing them. It gave students opportunities with knowing/sharing work 

and thinking by their friends. The students not only checked correctness of their 

answers but also recognized a variety of differences between others and their own. In 

J3, students were learning how to solve simultaneous equations; and they compared 

and recognized difference in solution procedures (see the transcript by IW above). In 

J1, the teacher stressed presentation of students’ ideas and discussion after J-K activity. 

Her questions were mostly open with the intention of eliciting different ideas form 

students. Under such circumstance, the students noticed differences not only in ideas 

and ways of solving problems but also in focal points of exploring functional 

relationship, ways of expressing ideas and solution methods, reasons behinds opinions, 

and features noticed in the graphs (see a transcript below). Here, TA made aware of 

differences between her graph and graphs by two students (whether plotting simply as 

1,2,3,… or including 0.5 in between). She was developing meaning of plotted points 

which she had not noticed previously. 

TA What he did, was different it was different although they examined the 
same thing.  So, there, how that happened. 

Interviewer How it happened.  Yes.  You mean how the shape of the graph came out 
differently?   

TA Yes. 

Interviewer How the points were plotted? 

TA Plotting, we plotted down one, two, three, four but NO included zero point 
five in between and UM and I just figured out one, two, three, four.  How 
the answers differ.    (J1-L5) 

It was rather complicated how students evaluated the difference they noticed. At one 

time, they did not think anything but just admitting the difference. At other time, they 

thought about the difference further and tried to get the reason for that. Some students 

showed their desire to incorporate the different point proposed by their friends, such as,  

SU: here I think it was good for me that I was able to hear opinions besides the ones we’ve 

discussed with our partners. I think we will keep studying about this theme next time, 

so if I pay attention to those points, I would be able to find new points (J1-L9). 
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Students were concerned with the consequences of their questions and conjectures. 

From video records and post-lesson interviews, it was revealed that question was a big 

driving force in their learning. Here, question means a specific consideration/interest 

such as “What does it mean?” or “Why does it happen?” than a general puzzlement “I 

don’t know how.” When students had questions while they were engaging in J-K 

activity, they tried to resolve them with their neighbours and the teacher. Still, their 

concern about the question was also carried over in the subsequent part of the lesson.  

I show an episode from the side of one student, SH, in J-1. In L4, the teacher presented 

the problem of investigating the relationship between two variables. Two students 

presented the results of their investigation in L5. The problem and the result of 

investigation presented by TA (only her table is shown) are in Figure 2: 

The Problem of Origami (Paper folding)  (L4-L7) 

Like the figure below, we fold into a rectangle (one side is coloured) with 12 cm in length and 15 cm in 

width. What changes when we change the location of the folds?  

 

 

 

 

 

Result of Investigation by TA 

X: Width of coloured rectangle 15  14  13  12  11  10   9    8    7     6     5    4    3    2    1    0 

Y: Perimeter of coloured rectangle 54  52  50  48  46  44  42  40  38  36  34  32  30  28  26   0 

Figure 2: The problem and result of investigation by TA  

In L6, results given by the two students were discussed. Here, the students were 

engaged in the J-K activity to develop their opinions. During the J-K, SH had a 

question that the value of y may not be 0 when x=0. This question seems natural for 

him because he had already paid attention to the fact that the length of vertical side of 

the rectangle does not change (L4). SH inquired of the teacher about the question.  

SH                 Mis, the height is not changing, is it? 

Teacher         No, it isn't. 

SH             The height. It will change when it's ( ), so (it'll be twenty-four, when it's 
twelve?) 

Teacher         Ok, if you think it means that, then you need to correct that. It's ok, isn't it? 

During the time for discussion that lasted over two lessons, several students talked that 

y=0 when x=0. SH gave counter argument that y=24 when x=0 three times. It is worth 

noting that SH argued about the validity of y=24 when x=0 by interpreting the graph 

from different perspectives, i.e., physical embodiment and consistency in the shape of 

graph: e.g., “We used origami in solving this problem. And that is why such idea like 

calling this shape ‘a stick’ had come up in the first place,” and “Uh, if you’d like to say 

15cm 

12cm 
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y should be zero when x is zero, then saying ‘constantly increasing’ in this graph would 

be wrong, huh?” SH’s effort of making meaning of his argument started from his 

question that the value of y may not be 0 when x=0. He was concerned with the 

consequence of his question and challenged to argue against his friends. This heated 

discussion was finally converged to exclude x=0 and formulate y=2x+24 (x>0). 

Concept of domain was addressed to contribute to resolving the problematic situation.  

DISCUSSION 

In this paper, students’ meaning construction in two classrooms was reported from the 

viewpoint of J-K activity. The J-K had two roles in student’s meaning construction. On 

the one hand, J-K served as a time in which puzzlement, questions and conjectures 

arouse within the students. On the other hand, it enabled to create students’ knowledge 

base so that they could participate in later part of the lesson. A qualitative analysis gave 

more information about individual students’ meaning construction. The students were 

constructing their mathematical meaning by comparing and connecting between their 

own work and thinking during J-K and their friends’ work and thinking presented later 

in the whole-class discussion. Such comparison was observed in various points of view. 

Questions and conjectures students had during J-K were also driving forces for them to 

make meaning in the whole-class discussion.  

O’Keefe et al. (2006) compared a lesson event, Between Desks Instruction, in 

mathematics classrooms in six countries. They found that although this form was 

evident across all the classrooms, participants could attribute different characteristics 

to the activity. In this paper, a focus was put more on an idiosyncratic type of event in 

one country. Nevertheless, results also suggested particular characteristics and 

functions attributed by both teachers and students. Especially, by delving into the side 

of students, the results gave information about the possibility of idiosyncratic 

mechanisms of learning in classrooms in different countries. Further analysis would be 

interesting if similar roles are discerned in the lessons in other countries. 

Based on the results of comparisons across seven countries, Hiebert et al. (2003) stated 

that the way in which the mathematics lesson environments were organized constrains 

both the mathematics content that is taught and the way that content is taught. Results 

in this paper put a mark on this by indicating it is not organization per sue but teacher’s 

specific approach to students’ thinking under such organization that has the influence 

on student’s meaning construction. They were seen in teacher’s dealing with a variety 

of students’ ideas, encouraging their reflections based on actual experience and 

handling questions. For example, teacher utilized different kinds of questions. At one 

time, they anticipated questions that would arise from their students, and mentioned or 

discussed them when it is necessary. At other time, they went deeper and raised their 

questions to the students. These specific approaches resulted in strong impacts on 

students under their organization of lessons. 

By investigating the side of students, some of the realities of students were also 

documented. One is the existence of individual differences. As described earlier, there 
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were students whose concern was more for solving the problem before their eyes with 

their neighbours and the teacher. One student said in the interview that he often got 

confused when someone said something new after he solved the problem on his own 

way. Analysis also revealed students’ difficulties in understanding the meaningfulness 

of J-K in learning mathematics and in reflecting on their thinking from teacher’s 

perspective. These realities suggest deeper influence of lesson pattern on students by 

requiring them an interactive attitude toward learning mathematics. More information 

is needed because they are expected to contribute to articulating significant role of 

teacher in the ‘structured problem solving’ in Japan. 

References 

Clarke, D. (2006). The LPS research design. In D. Clarke, C. Keitel, & Y. Shimizu (eds.), 

Mathematics classrooms in twelve countries: The insider’s perspective (pp. 15-36). 

Rotterdam: Sense Publishers. 

Cobb, P., & Bauersfeld, H. (eds.) (1995), The emergence of mathematical meaning: 

Interaction in classroom cultures. Hillsdale, NJ: LEA. 

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and collective 

reflection. Journal for Research in Mathematics Education, 28(3), 258-277. 

Fujii, T. (2002). International comparison of mathematics lessons: Its tasks and views for 

future study. Proceedings of the 26th Annual Meeting Japan Society for Science Education, 

121-122. Shimane, Japan: JSSE. (in Japanese) 

Graser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative 

research. Chicago: Aldine. 

Hiebert J. et al. (2003). Teaching mathematics in seven countries: Results from the TIMSS 

1999 video study (NCES 2003-013). U.S. Department of Education. Washington, DC: 

National Center for Education Statistics. 

Hino, K. (2006). The role of seatwork in three Japanese classrooms. In D. Clarke, C. Keitel, & 

Y. Shimizu (eds.), Mathematics classrooms in twelve countries: The insider’s perspective 

(pp. 59-74). Rotterdam: Sense Publishers. 

O’Keefe, C., Xu, L H, & Clarke, D. (2006). Kikan-Shido: Between desks instruction. In D. 

Klarke, E. Jonas, E. Jablonka, & I., Mok (eds.), Making connections: Comparing 

mathematics classrooms around the world (pp. 73-105). Rotterdam: Sense Publishers. 

Shimizu, Y. (1999). Studying sample lessons rather than one excellent lesson: A Japanese 

perspective on the TIMSS videotape classroom study. Zentralblatt für Didactik der 

Mathematik, 6, 191-195. 

Stigler, J. W., & Hiebert, J. (1999). The teaching gap. New York: Free Press. 

Tsubota, K. et al. (2006). Reconstruction of lesson organization. Tokyo: Toyokan. (in 

Japanese) 

Waschescio, U. (1998). The missing link: Social and cultural aspects in social constructivist 

theories. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics 

classroom (pp. 221-241). Cambridge University Press. 



2007. In Woo, J. H., Lew, H. C., Park, K. S. & Seo, D. Y. (Eds.). Proceedings of the 31
st 
Conference of  

the International Group for the Psychology of Mathematics Education, Vol. 3, pp. 33-40. Seoul: PME. 3-33 

A FRAMEWORK FOR CREATING OR ANALYZING JAPANESE 

LESSONS FROM THE VIEWPOINT OF MATHEMATICAL 

ACTIVITIES: A FRACTION LESSON 

Kenji Hiraoka and Kaori Yoshida-Miyauchi 

Nagasaki University, Japan 

 

The paper aims to (1) give a framework by which teachers can analyze Japanese 

mathematics lessons or create their own lessons from the standpoint of mathematical 

activities [CALMA Framework] and (2) discuss a fraction lesson based on the 

framework. First, mathematical activities, problem solving, mathematical richness, 

and creativity were considered for the creation of the framework, based on the current 

state of Japanese mathematics lessons. Second, through lesson analysis, teachers’ 

crucial roles were derived, such as the raising of levels of mathematical richness. 

INTRODUCTION 

Lessons, or teaching/learning activities, depend on their respective cultures, and 

accordingly they can differ to varying extents. In Japan, one lesson of mathematics 

should be “planned as complete experiences – as stories with a beginning, a middle, 

and an end” (Stigler & Hiebert, 1999, p.95). In other words, the beginning and end of a 

lesson usually have meaningful connections via the middle. 

Furthermore, Japanese “lesson study” (jugyou kenkyuu) has been attracting attention in 

recent years as the benefits gained from the improvement of lessons have become more 

widely known (e.g. Stigler & Hiebert, 1999; Curcio & Billay, 2003). Lesson study 

basically consists of the following series of three steps: 

• Creating a “lesson plan” (gakushuu-shidou-an) before a lesson; 

• Giving/observing an “open lesson” based on the lesson plan; and 

•  “Reflecting on and discussing” interpretations and improvements of the 

contents of mathematics, children’s ways of thinking, teacher reactions to 

them, and so on, referring to the lesson plan after the lesson. 

Such lesson study is characterized by the fact that a teacher giving a lesson and the 

other teachers and researchers observing the lesson collect and interpret data in 

collaboration (Takahashi, 2006). However, experienced teachers usually offer 

different interpretations of the data compared to novice teachers because of differences 

in teaching experiences. Hence this paper focuses on a replacement for such skilled 

teachers, by which novice teachers can develop their lessons effectively by themselves. 

Accordingly, this paper aims to (1) give a framework by which teachers can analyze 

mathematics lessons or create their own lessons from the standpoint of mathematical 

activities, and (2) analyze a fraction lesson in the six grades in Japan using the 
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framework and consequently show that the framework has the possibility to contribute 

to the better understanding of mathematics lessons. 

FRAMEWORK FOR UNDERSTANDING A JAPANESE LESSON WELL 

This section illustrates the four main aspects of what (should) make up a mathematics 

lesson in Japan; i.e., mathematical activities, problem solving, mathematical richness, 

and creativity, and proposes a framework for creating or analyzing Japanese lessons 

from the viewpoint of mathematical activities. 

Mathematical Activities in a Lesson 

“Mathematical activities” is the key idea characterizing current Japanese mathematics 

lessons. In Japan, the Ministry of Education, Culture, Sports, Science and Technology 

(MEXT) publishes Courses of Study (gakushuu-shidouyouryou), in which MEXT 

prescribes the national standards for education, such as the objectives for each subject. 

According to the Japan Society of Mathematical Education (JSME) (2000, p.4), the 

main features of mathematics curricula in Japan have changed over time to have the 

following characteristics as follows: (1) children centered (from the second half of the 

1940s); (2) unit learning; (3) mathematical ways of thinking; (4) systematic learning 

(1960s); (5) mathematical modernization; (6) basics, problem solving; (7) 

individualization, informatization; and (8) mathematical activities (2000s).  

Therefore, the key term “mathematical activities” appears in the latest Courses of 

Study, describing the objectives of mathematics for elementary, lower secondary, and 

upper secondary schools (see Table 1).  

 Objectives of teaching/learning mathematics 

Elementary 

Schools 

 

2002 

revision 

Through mathematical activities concerning numbers, quantities and 

geometrical figures, to help children get basic knowledge and skills, to 

establish their abilities to think logically and think with good 

perspectives on everyday phenomena, and to help children notice the 

pleasure of doing activities and appreciate the value of mathematical 

methods, thereby to foster attitudes to make use of mathematics in daily 

life situations. 

Upper 

Secondary 

Schools 

 

2003 

revision 

To help students deepen their understanding of the basic concepts, 

principles, and laws of mathematics, and to develop their abilities to 

think and deal mathematically with various phenomena, thereby to 

cultivate their basic creativity through mathematical activities; and to 

help students appreciate mathematical ways of observing and thinking, 

thereby to foster attitudes which seek positively to apply the qualities 

and abilities mentioned above.                                                                                                                                                                                                                                      
Note. Objectives for lower secondary schools are omitted because of the limited space, the 

translation in English is based on JSME (2000, pp.7, 28), and the italics are our emphasis. 

Table 1: Objectives of teaching/learning mathematics for elementary and 

upper secondary schools described in the Courses of Study in Japan 
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A Problem-Solving-Style Lesson 

According to MEXT (1999), the mathematical activities shown in Table 1 can be 

interpreted as the following repetition of a sequence: 

(A) Correlating everyday phenomena with mathematics and mathematizing them,  

(B) Solving the problems mathematically, (C) Utilizing or appreciating the results 

while returning to the everyday phenomena, and  (A) ...  

Such a series of mathematical activities can be likened to the process of problem 

solving. For example, Polya (1954/1975) posed four steps of problem solving: 1) 

understanding the problem, 2) devising a plan, 3) carrying out the plan, and 4) looking 

back. Furthermore, Krulik (1977) gave the following set of steps: 1) locating a concrete 

problem, 2) making a mathematical model, 3) solving the mathematical model, and 4) 

applying it to the concrete problem. 

As a result, it is assumed that in the current Courses of Study in Japan students’ 

mathematical activities in a class are involved with such problem solving processes. 

Indeed, teachers in Japan, and in particular in elementary schools, often give 

mathematics lessons following a style of problem solving. A mathematics class in 

general consists of three (or four in more detail) stages: “grasping” (tsukamu) a 

problem (introduction), “solving” the problem by oneself and “developing 

(neriageru)” it in collaboration with everyone (development and turn), and “deepening 

(fukameru) and concluding” the problem (conclusion). Therefore students are 

sometimes encouraged to wrestle with only one or a few problems in a lesson.  

In other words, a teacher has to prepare a problem which is worth solving during a 45 

to 50 minute class to develop the students’ concepts of mathematics. As a result,  such 

Japanese mathematics lessons have been described as “well structured problem 

solving” (Stigler & Hiebert, 1999, p.40). 

Three Levels of Mathematical Richness and Structures Contained in Contexts 

In a problem-solving-style lesson of mathematics incorporating a variety of 

mathematical activities, students usually solve only a few problems. However, even 

though the number of problems they confront in a class may be few, they are expected 

to have deepened their understanding of mathematics at the end of a lesson compared 

to before they started. Hence, different levels of mathematics should be arranged in 

purposeful ways within a lesson, and it seems that Vygotsky’s and Treffer’s studies are 

useful to this end. 

Referring to Köhler’s chimpanzee experiments, Vygotsky and Luria (1930/1993) 

pointed out that grasping a structure in an unfamiliar situation and transferring it to 

another situation characterized intellectual behavior of higher anthropoid apes, 

including humans, which they referred to as “law of structure” (p.67). That is to say, 

once students grasp the structure of a problem in a concrete or mathematical situation, 

they can transfer that structure to a different mathematical or even a broader situation, 

although each element may be changed. 
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Moreover, Treffers (1987) defined mathematization as follows: 

the organizing and structuring activity in which acquired knowledge and abilities are 

called upon in order to discover still unknown regularities, connections, structures (p.247). 

Furthermore, mathematization can be separated into horizontal mathematization and 

vertical mathematization. The former concerns transforming a problem situation into a 

mathematical context, while the latter relates to “mathematical processing and level 

raising in the structure of the problem field under consideration”(p.247). 

In conclusion, students have the ability to transfer the mathematical structure of a 

problem within a particular context to another context as far as the structure is 

unchanged according to Vygotsky, and vertical mathematization as described by 

Treffers contributes to raising the level of mathematical richness. 

Creativity in Mathematics Lessons 

As shown in Table 1, developing creativity through mathematical activities is one of 

the objectives when students in Japan learn mathematics, and in particular in upper 

secondary schools. 

Guilford (1959) viewed intellect from three aspects: operations, products, and contents. 

Of the five factors comprising operations, here convergent thinking and divergent 

thinking should be given significant attention.  

For instance, the giving of various solutions or the exploring of open-ended problems 

helps to foster students who are rich in creativity, or, more specifically, in divergent 

thinking (e.g., Sinclair & Crespo, 2006). Indeed, in Japanese mathematics lessons 

students are encouraged to give a lot of different solutions or explanations for a 

problem using different modes of representation such as diagrams, number lines, and 

mathematical signs and expressions. 

This paper places importance on the development of student abilities and attitudes, 

taking into account both convergent and divergent thinking. In other words, students 

should be required to discover a mathematical problem in everyday phenomena and 

solve it (convergent thinking), and, moreover, apply and develop the solution methods 

used to other contexts, producing broader richness of mathematical understanding 

(divergent thinking). 

A Framework for Creating and Analyzing Lessons from the Viewpoint of 

Mathematical Activities in Japan [CALMA Framework] 

With due consideration of the discussion above, we propose a framework for creating 

and analyzing Japanese mathematics lessons from the viewpoint of mathematical 

activities (CALMA Framework) (see Figure 1) in addition to a definition of 

mathematical activities. 

The Five Mathematical Activities Arranged in a Lesson: (1) mathematizing: to 

interpret concrete phenomena mathematically; (2) formulating: to formulate problems 

mathematically based on the concrete phenomena, i.e., to idealize or simplify them 
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mathematically; (3) exploring and processing: to explore and handle the problems 

mathematically based on acquired knowledge and abilities; (4) looking back and 

applying: to reflect on the prior concrete situations (or problems) in broader contexts 

and/or apply the acquired mathematical ways of thinking and mathematical solutions 

to broader areas; (5) developing, creating, and appreciating: to develop the findings 

and/or create something new (for students), becoming aware of the mathematical 

richness of the new ways of approaching problems, and/or to appreciate the culture of 

mathematics. 

ⅠⅠⅠⅠbbbb：：：：

Mathematical Mathematical Mathematical Mathematical 
naturenaturenaturenature

＜Time＞

“Grasp” a problem “Solve” it individually & 
“develop” it collectively

“Deepen”
the problem

ⅢⅢⅢⅢbbbb：：：：

Development, Development, Development, Development, 

creativity, and creativity, and creativity, and creativity, and 
appreciationappreciationappreciationappreciation

ⅡⅡⅡⅡbbbb：：：：
Mathematical Mathematical Mathematical Mathematical 

solutionssolutionssolutionssolutions

ⅢⅢⅢⅢaaaa：：：：

Concreteness Concreteness Concreteness Concreteness 

in broader in broader in broader in broader 
contextscontextscontextscontexts

ⅡⅡⅡⅡaaaa：：：：
Mathematical Mathematical Mathematical Mathematical 

problemsproblemsproblemsproblems

ⅠⅠⅠⅠaaaa：：：：

Concrete Concrete Concrete Concrete 
phenomenonphenomenonphenomenonphenomenon

(1)(1)(1)(1)
(2)(2)(2)(2)

(3)(3)(3)(3)
(4)(4)(4)(4)

(5)(5)(5)(5)

[Introduction] [Development] [Turn] [Conclusion]

Concrete 
Levels

IIII

Mathematical 
Levels

IIIIIIII

Broader 
Levels

IIIIIIIIIIII

＜Levels of 
Mathematical 
Richness＞

Mathematical Activities

(1) Mathematizing

(2) Formulating

(3) Exploring & Processing

(4) Reflecting on & Applying

(5) Developing, Creating & 

Appreciating

Figure 1: Japanese CALMA Framework to be used in mathematics lessons for 

elementary, lower secondary, and upper secondary schools 

ANALYSIS OF A FRACTION LESSON USING THE CALMA FRAMEWORK 

A fraction lesson on October 26, 2006, was observed for the purpose of this analysis. It 

was an open lesson conducted as part of a lesson study in a series of teacher trainings. 

The lesson was observed by about 15 teachers, ranging from novices to principals, in 

two elementary schools and by five people belonging to a university, including the 

authors. Because the school was in a remote area on a small island in Japan, only nine 

sixth graders (three girls and six boys) were in the class. 

Ms. T created a lesson plan in advance according to the method of lesson study and 

discussed it with one of the authors several weeks before the lesson. The lesson was 
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placed within a unit on the multiplication and division of fractions. The lesson 

presented a situation in which a base quantity [B] and a proportion [P] expressed by a 

fraction were known, while a comparative quantity [C] was unknown, in the structure 

of C = B * P. In the previous lesson the fractional proportion was unknown (P = C/B), 

while in the subsequent lesson the base quantity was unknown (B = C/P). In the fifth 

grade the students had learned these structures of the relationships among B, P, and C, 

although at the time the proportions had been decimal numbers and not fractions. 

The lesson started with a concrete problem given by Ms. T as follows. This was the 

only problem the students attempted during the class: 

“Cookies cost 600 yen. Chocolates cost 6/5 the price of cookies. Candies cost 3/5 the price 

of cookies. How much are the chocolates and the candies, respectively?” 

This fraction lesson was analyzed according to the Japanese CALMA framework, as 

shown in Appendix 1. 

DISCUSSION 

A central finding from Appendix 1 is the importance of the teachers’ role to raise the 

level of mathematical richness from I to II and from II to III. When the students were 

formulating the problem [Ib � IIa], Ms. T asked students to predict whether the 

answers were higher than the basic value (of the cookies). 

Ms. T: Let’s predict. The basic value is the value of the cookies. How much is it? 

S1 (student):  It’s 600 yen. 

Ms. T: So do you think the chocolates are more expensive or cheaper than 600 
yen? (1) 

Ss (many):  They should be higher. 

Ms. T.:  Can you give a reason? 

S2:  You can see that 600 yen is 1 in relation to 6/5(2), and that 6/5 is bigger than 
5/5. So, the chocolates should be more expensive. 

Ms. T.:  What about the candies? 

S3:  I think they are cheaper than the cookies because when you regard 600 yen 
as proportion 1, 1 is equal to 5/5 (3) and 3/5 is smaller than 1. That’s why 
the candies are cheaper than 600 yen. 

The teacher’s question (underline 1) triggered a raise in the level of mathematical 

richness from a concrete to a mathematical level. More specifically, in the beginning 

students talked about some elements at a concrete context (Level I) (i.e., 600 yen, 6/5, 

cookies, etc.), but when they had to justify why the chocolates were more expensive 

than the cookies, they transferred the objects of their attention from concrete contexts 

to mathematical ones and reinterpreted the elements from the viewpoint of 

mathematics (in Level II) (underlines 2 & 3). 

Moreover, the teacher’s question triggered the opportunity for students to “use 

fractions.” When people think, or justify etc., they require some kind of “means” or 
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“tools.” In this case, therefore, the students are forced to use fractions when giving 

explanations for their predictions. As a result, students, including those who have 

difficulty processing such problems on a number line by themselves, can share the idea 

that “1 has to be divided into five equal parts in this case” (underline 3), which is 

crucial for handling number lines skillfully. 

Next, Ms. T’s question during Mathematical Activity 4 brought students to broader 

levels of thought. Students focused on each element (600, 3/5, and the price of candies 

[= x]) on a concrete level, and on a mathematical level they explored the structure of 

the problem, i.e., the relationships among those elements (x = 600 * 3/5). On the other 

hand, her question also lead to reflective thinking to reconsider whether using 

multiplication was really appropriate for expressing the relationships instead of using 

division on more general level. Consequently, the broader level focus was on more 

general structures or relationships, i.e., C = B * P and on the validity of the 

multiplicative structure. 
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Appendix 1: Analyzing a fraction lesson in the six grades in Japan using the 

CALMA framework 
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REVISITING DISCOURSE AS AN INSTRUCTIONAL RESOURCE: 

PRACTICES THAT CREATE SPACES FOR LEARNING AND 

STUDENT CONTRIBUTIONS 

Lynn Liao Hodge*, Qing Zhao, Jana Visnovska, and Paul Cobb 

The University of Tennessee*, Vanderbilt University 

In this paper, we revisit the overall idea of classroom discourse as an instructional 

resource. We take the perspective of access in describing how discourse can create 

opportunities for students to learn important concepts and to share their ideas as part 

of the legitimate and sanctioned space of the classroom. We provide illustrations from 

a middle grades class in order to investigate how discourse can be drawn upon to 

advance the instructional agenda and to support students in experiencing voice in 

class. 

INTRODUCTION 

Today, mathematics teachers are faced with challenging decisions regarding the kinds of 

resources on which they will draw in developing lessons and teaching particular concepts. 

The focus of this paper is on one resource that is often under utilized in mathematics 

classrooms. This resource is the discourse – conversations and discussions – that develops 

in a class. The idea of discourse is not a new one. Reform recommendations (NCTM 

Standards, 1989; 1991; 2000) have emphasized the importance of discourse to all 

mathematics classrooms. The first Standards documents (1989) defined discourse in this 

way:  

Discourse refers to the ways of representing, thinking, talking, and agreeing and 

disagreeing that teachers and students use to engage in those tasks. The discourse embeds 

fundamental values about knowledge and authority. Its nature is reflected in what makes 

an answer right and what counts as legitimate mathematical activity, argument, and 

thinking. Teachers, through the ways in which they orchestrate discourse, convey 

messages about whose knowledge and ways of thinking and knowing are valued, who is 

considered about to contribute, and who has status in the group. (p. 20) 

This definition implies that on one hand discourse has to do with the moment-to-moment 

interactions and conversations in mathematics class. On the other hand, discourse 

importantly reflects values and status within a class. The Standards have drawn attention 

to the critical role that discourse plays in mathematical learning as well as how discourse 

pervades every aspect of the classroom. Many scholars have described classroom 

discourse as an instructional resource for teachers and students, and in doing so have 

documented how it might play out in particular classrooms (Cobb, 2000; Gutierrez et al., 

1999; Lampert, 1990; Thompson, Philipp et al. 1994). Building on previous researchers, 

our purpose in this paper is to illustrate how particular discourse practices can serve as 

resources in responding to all learners in a mathematics class. We take the perspective of 

access and provide illustrations from a middle school statistics project in order to examine 
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the kinds of practices that have the potential to create opportunities for all students to gain 

access to more positive views of their mathematical learning.  

ACCESS, DISCOURSE, AND LEARNING MATHEMATICS 

In this paper, we take the perspective that particular classroom practices can create access 

to substantial learning and a sense of value in learning mathematics (Nasir & Cobb, 2002). 

In this view, aspects of the classroom social context are seen as supporting (or delimiting) 

students’ opportunities to engage meaningfully with the discipline. Students’ orientations 

toward learning mathematics can then be seen to stem from the arrangement of lessons 

and the participation structure that come to define life in classrooms. This perspective 

calls attention to how instructional practices can create spaces that give students 

opportunities to share their ideas, have their ideas valued, and at the same time learning 

important ideas. 

Research in math education has emphasized how classroom discourse can afford students 

access to mathematical ideas and task interpretations (Cobb, 2000; Lampert, 1990) as well 

as a better understanding of the real world contexts that are presented in instructional tasks 

(Boaler, 2002). However, the issue of how discourse can provide access to more positive 

orientations towards learning math has not been investigated as fully. Guterriez and her 

colleagues show the significance of examining discourse practices in such a way.  

In their analysis, Gutierrez, Baquedano-Lopez, and Tejeda (1999) draw attention to a third 

discursive space in an elementary class that sheds light on how discourse can support 

students’ access to an affiliation with learning in particular classrooms. Gutierrez et al. 

analyze literacy practices of an immersion Spanish elementary school class and illustrate 

the notion of a third space that can emerge in discourse. In their ethnographic study, 

Gutierrez et al. define the official space of the classroom as consisting of the sanctioned, 

legitimate ways of participating in classroom discourse while the unofficial space 

includes students’ ways of participating that do not comply with the teacher’s view of 

appropriate participation. For example, Gutierrez et al. describe how students often 

engage in a counter narrative within the unofficial space of the classroom through 

practices such as giggling about sensitive topics, using colloquialisms, and using home 

and local knowledge in their comments. They describe how the classroom teacher 

included students’ comments as part of discussions and in doing so sanctioned them as 

legitimate aspects of the classroom. Their analysis raises explicitly the central issue of 

how such practices, as guided by the teacher, can create access to experiences of voice in 

class while simultaneously advancing the instructional agenda in mathematics classroom. 

The relationship between students’ experiences of voice and their developing sense of 

affiliation with classroom learning hinges on Wenger’s (1998) notion of field of 

negotiability. This idea refers to the realm over which students perceive themselves to 

have control in the classroom. This field of negotiability relates to students’ perceptions of 

the extent to which they can contribute to the ideas that matter in the classroom. In 

practice, contributing to the ideas that matter in the mathematics classroom may involve 

making decisions about the legitimacy of task interpretations and the relative efficiency 
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and sophistication of the methods used in approaching problems. Students who have an 

expansive field of negotiability view themselves to have significant roles in the classroom 

in justifying interpretations and conjectures. They do not confine decision making about 

the mathematical content to the role of the teacher. Students with restrictive fields of 

negotiability view themselves as having little voice or involvement in such decisions in 

the classroom. More often, they view the teacher and the textbook as having intellectual 

authority, not students. Of significance is that Wenger describes how changes in field of 

negotiability have the most profound impact on students’ identification and affiliation 

with a community of practice in the long term (1998). Therefore, isolated classroom 

experiences that contribute to more expansive fields of negotiability can build and place 

students on a trajectory toward growing affiliation with mathematics.  

BACKGROUND 

In the middle-school class we studied, students participated in a statistics project that 

focused on supporting their understanding of statistical data analysis (Cobb, McClain, 

& Gravemeijer, 2003). A member of the research team served as the teacher in the 

project that spanned two years. Twenty-nine seventh-grade students participated in the 

project for the first year that took place over a twelve-week period and involved 34 

classroom sessions of approximately 40 minutes in length. The following school year, 

a smaller contingent of students from the same class (now eighth graders) participated 

in a fourteen-week project continuation involving 41 classroom sessions of 40 minutes. 

This second year of the project addressed students’ understanding of bivariate data. 

Both field notes and videorecordings of all classroom sessions were collected during 

the project.  

During the second year, we conducted interviews with students to examine their 

perspective on their learning in the class. An analysis of the interview data indicated 

that, for the most part, students came to value their experiences and learning in the 

class (Cobb, Hodge, Visnovska, & Zhao, submitted). The findings from this analysis 

prompted us to return to the data of classroom videorecordings and field notes. We 

examined the data systematically in order to identify classroom practices that 

contributed to the students’ affiliation with the type of mathematical learning that 

became constituted in the classroom. 

DATA ANALYSIS 

We analysed the classroom data by drawing on methods outlined by Glaser & Strauss 

(1967). Our analysis involved multiple overlapping phases. First, we moved through 

field notes and videorecordings in order to identify critical sessions in which aspects of 

discourse or instructional practices seemed to contribute to students’ participation in 

whole-class discussions. We were interested in situations in which students’ 

contributions became significant topics of conversation. Additionally, we were 

interested in situations in which students might have perceived themselves to be 

silenced. We examined moments in discussions in which students’ seemingly 

unrelated comments emerged and how they played out in interaction. Second, we 
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examined data across sessions at a meta-level in order to identify discursive practices 

that were consistent or that changed over time, noting their implications for students’ 

participation. In both these phases, we focused on the opportunities that classroom 

discourse created for discussing important ideas and for students’ participation in these 

discussions.  

THE ROLE OF INTRODUCTORY DISCUSSIONS 

We confine our illustrations from the middle grades class to whole-class discussions 

that introduced instructional activities. The rationale for our focus has to do with the 

important role of introductory discussions in the statistics project. The teacher drew on 

discussions to introduce instructional tasks to students and to develop their interest in 

the issue to be investigated. These discussions provided students with reasons to 

analyse specific datasets. We should mention that, overall, instructional tasks in the 

statistics project were designed to capture the authentic investigative spirit of 

analyzing data. As part of this effort, students were invited to analyze data that served 

the purpose of answering questions that were relevant from their perspective. Most of 

the instructional tasks involved comparing two data sets in order to make a decision or 

judgment (e.g., determining whether installing airbags in cars does have an impact on 

automobile safety or investigating the effectiveness of two Aids treatments on raising 

T-cell counts).  

In the course of these introductory discussions, which were often times quite lengthy, 

the teacher and students together delineated the particular issue under investigation, 

clarified its significance, identified relevant aspects of the issue that should be 

measured, and considered how they might be measured. In this way, the introductory 

discussion served to clarify aspects of the problem context and their relationship to the 

question at hand. At the same time, the introductory discussion also created 

opportunities for students to understand the relevance of the issues presented in the 

tasks. Following the introductory discussion, the teacher then introduced the data as 

having been generated by a systematic process and the students conducted their 

analyses individually or in small groups. The final phase of an instructional activity 

consisted of a whole-class discussion of the students’ analyses.  

INCLUDING STUDENTS’ CONTRIBUTIONS 

One of the challenges that Gutierrez et al.’s (1999) work has indicated is how to include 

students in discussions while at the same time addressing important ideas (Ball, 1993). In 

moment-to-moment interactions, it is often difficult to make decisions quickly about how 

to include students’ comments in such a way as to move in the direction of goals for a 

particular lesson, and additionally, how to respond to students’ seemingly extraneous 

comments. We address both sides of this coin as we examine illustrations from the 

introductory discussions: Including and treating students’ ideas as valued aspects of 

whole-class discussion and drawing on students’ contributions strategically to advance 

the instructional agenda. As we discuss this tension, we emphasize one practice that 

supported students’ access to mathematical learning in class.  
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From the description we have given thus far, we hope to be clear that the introductory 

discussions are quite different from teacher explanations of the directions students are to 

follow as they solve problems. These discussions involve making the activity or problems 

“come to life” for students by having students contribute to the construction of contexts 

and issues within the classroom. These introductory discussions can be described in terms 

of various phases that clarify:   

• The overall problem or broader issue 

• The significance of the problem to particular audiences 

• The students’ job in working on the problem and specific products that will 

result 

• The different aspects of the problem to consider  

During many introductory discussions that occurred in the initial stages of the project, 

many of the students’ shared personal experiences that related to the overall topic of the 

problem (e.g. batteries; braking distances and automobile safety but not to the specifics of 

data to compare the two makes of cars). The following comment is an example of the 

personal comments that students would make during that time: 

K:  They have a commercial where it’s like a big long line and they have the tires and says 
this is what happens when the tire like stops. And showing how fast it takes 
to go from 60 to 0. 

Teacher:  Yeah as opposed to 0 to 60. Usually, yeah, usually the cars that, you know, the 
sports cars say from 0 to 60 in you know so many seconds. They don’t talk 
a whole lot about from 60 to 0 which is pretty important when you have to 
stop. 

As the discussion continued, students made similar comments: 

Gary:  When my sister was taking her driving test, I used to watch her videos along with 
her. And they said on an icy road it could take a car 275 feet to stop. 

Teacher:  To stop. That’s exactly correct. Because it just starts sliding. There’s just 
nothing for the wheels to grab hold of.   

In the early stages of the project, the teacher revoiced (O’Conner & Michaels, 1996) 

students’ personal comments and included them as a part of the ongoing discussion. In 

revoicing, the teacher drew attention to different aspects of the problem situation and the 

issue the students would be asked to investigate. Her intent in including students’ 

comments and supporting their participation was to cultivate their interest in the issue that 

the problem presented. In doing so, she supported a space in which students could share 

ideas as part of the teacher’s goals of clarifying the problem context. We conjecture that 

this practice of building on students’ comments may have contributed to students’ interest 

in investigating the issue through data analysis. Additionally, we speculate that this 

practice placed students on a path in experiencing more expansive fields of negotiability 

within the context of the class. We note that this illustration offers only a glimpse of a 

lengthy process that occurred during the project. 

As the project continued, the teacher became less accepting of such comments and she and 

the students together coined a term, “random comments,” to label comments that did not 



Hodge, Zhao, Visnovska & Cobb 

PME31―2007 3-46 

relate to the problem at hand. These personal comments became increasingly rare, and 

students who made these comments were typically challenged by the teacher and in some 

cases, other students.  This explicit attention to talking about classroom discourse 

emphasizes the idea of students as decision makers and resources for their own learning. 

From the perspective of access, the practice of building on students’ comments toward the 

instructional agenda, provided opportunities to share their ideas and possibly view their 

ideas as part of the sanctioned and legitimate space of the class. This shift required that the 

students have a sense of what the relevant aspects of the problem task included. 

Additionally, this treatment of random comments created opportunities for students to 

reflect on their own participation and more generally on the nature of conversations.  

STUDENTS’ CONTRIBUTIONS AS RESOURCES 

Students’ contributions in introductory discussions can be viewed as reflecting student 

engagement and participation, and potentially more positive orientations, in the long term, 

about mathematical learning. At the same time, we would emphasize, students’ 

contributions served to advance the agenda of introductory discussions. They were used 

as resources by the teacher to create involve the students in co-constructing the problem 

context, and thereby providing many students with access to the task and their purpose in 

analyzing related datasets. As an illustration of the role of student contributions in 

constructing the problem context, consider a task that occurred in the latter half of the first 

year of the project in which students were to assess the effectiveness of installing airbags 

in cars. The teacher initiated this discussion by asking the students if they had seen 

television commercials that show crash test dummies being used to test the safety of cars. 

In opening the discussion with a non-mathematical question, she offered students a way 

“in” to the conversation. From there, she then presented a brief introduction of the overall 

issue of car safety testing. Drawing on a student’s question, she then focused the 

discussion specifically on the effectiveness of airbags, the issue that the students were to 

investigate. She was able to create a space for students’ contributions to be legitimate and 

for important topics, relevant to the task, to become topics of conversation.  

Dan: What are we trying to find out? 

Teacher: How do you think people made this decision about it, to put airbags in cars?  

 Rob? 

Rob: A lot of people were getting in wrecks. 

Teacher: How do you make a decision about whether or not to have an airbag in the car or 
not? How would you make that decision? Tyler? 

Tyler: You’d find out the safety of the car. You put a crash dummy in there and you see if 
he hits his head on the dashboard or the steering wheel or whatever. 

The previous excerpt offers a glimpse of how students’ comments were used to support 

care safety to become an explicit topic of conversation and, more generally, the role of 

students’ contributions in introductory discussions. As illustrated in this brief exchange, 

the teacher, through discourse, was able to provide opportunities for students to share their 

ideas, but at the same time drew on these comments to bring out relevant pieces of the 
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problem. In such discussions, the students were then encouraged to anticipate information 

that would be necessary to investigate the question at hand. This provided students with 

situations in which they would have to assess the appropriateness of their own comments 

and that of others. In this case, this information included the nature of the data to be 

collected that would be necessary to convince people to install airbags in cars.  

Later in the discussion, the teacher introduced data from crash tests conducted on all 

models of new cars available in the United States in 1993, some of which were not fitted 

with airbags.  

Teacher: These are the cars that were manufactured in 1993. These are the cars that had 
airbags (points to one of the data sets) and these are the ones that did not 
have airbags in them (points to the second data sets). And those are the 
results of the crash test, just looking at head injuries and trying to make a 
decision about airbags. Wes? 

Wes: What about the rest of the bodies? 

Teacher: No, they were just, the primary function of an airbag is to prevent head injuries 
so that’s what they were focusing on that. Good question. Rob? 

Rob: How could they know how severe the head injury was if they were dummies? 

Teacher: They put sensors in the dummies that could register the impact of what’s 
happening to them in there and slow motion cameras that watch it. 

In the previous exchange, students’ contributions (in this case their clarifying questions) 

were included to construct more fully the problem context. The students’ and teacher’s 

comments about measuring injuries suffered in car accidents together made the overall 

context and issue more accessible to the class. More importantly, by introducing the data 

that the students were to analyze as generated through a systematic process, the teacher 

and students co-constructed the meaning of the numbers in data sets with regard to the 

phenomenon to be investigated. As a consequence, the mathematical aspects of following 

whole-class discussions about the students’ analyses of the data were made more 

accessible to students. The introductory discussions can then be viewed as serving the 

dual purposes of both making the problem context come to life and constructing meaning 

for the numbers presented in data sets. Therefore, students’ contributions were drawn 

upon as resources in making the phenomenon and the mathematical ideas of problem 

tasks accessible to the classroom community.  

DISCUSSION 

In this paper, we have described classroom discourse as an instructional resource for 

supporting students’ access to important ideas and to more positive views toward 

mathematics learning. We have described a central challenge to teaching, that of 

advancing the instructional agenda and including students’ ideas as aspects of the 

legitimate and sanctioned space of mathematics class and how this challenge played 

out in one instance in a middle grades class. In navigating this tension, we have 

illustrated a shift in responsibility to include students in making decisions about 

relevancy and appropriateness in whole-class discussion. The classroom discourse we 

have described is significant in that it stresses the importance of creating opportunities 
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for students to share their ideas and experience their ideas as valued. However, it is also 

important to create situations for students to understand what constitutes relevancy and 

the purpose for engaging in specific activities in mathematics class.  
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AN ILLUSTRATION OF STUDENTS’ ENGAGEMENT WITH 

MATHEMATICAL SOFTWARE USING REMOTE OBSERVATION 

Anesa Hosein, James Aczel, Doug Clow and John T.E. Richardson 

The Open University, United Kingdom 

 

Students using three types of spreadsheet calculators for understanding expected value 

were observed remotely. This remote observation involves the use of webcams and 

application sharing for observing students learning mathematics. The study illustrates 

how remote observation can be used for collecting mathematical education data and 

raises questions about the extent to which such a method can be used in future 

experiments. 

INTRODUCTION 

Various studies have investigated how students learn mathematics with software such 

as computer algebra systems (e.g. Bardini, Pierce, & Stacey, 2004; Berry, Graham, & 

Smith, 2006) and spreadsheets (e.g. Clarke, Ayres, & Sweller, 2005). However, 

traditional observation studies of students using software occurs when students are 

invited to a specially-configured computer laboratory or “user-lab” where they are 

video and audio recorded  or the researcher visits and sets up audio and video recording 

facilities at the student’s place of study (e.g. San Diego, Aczel, & Hodgson, 2006; Vale 

& Leder, 2004). Whilst user-labs provide controlled recording conditions and the 

possibility of more sophisticated technology such as eye-tracking (e.g. San Diego et al., 

2006) these either remove or intrude on students in  their natural studying 

environments. Less intrusive observation practices have included the logging of 

students’ computer strokes and mouse clicks (e.g. Berry et al., 2006; Thomas & Paine, 

2002) but this means rich video data is lost.  

A method for observing students using software via the internet has recently been 

investigated called remote observation (Hosein, Aczel, Clow, & Richardson, 2007) 

which records both audio and video data, mouse clicks and keyboard entry. In remote 

observation, students use a remote application facility on their computer to connect to 

the researcher’s computer where they are able to interact and use software on it (see 

Figure 1). Through the students’ webcams and video conversation facilities in instant 

messengers (IMs), students are observed and interviewed whilst using the software. By 

using screen and audio capture software, students’ on-screen actions, webcam video 

and audio can all be recorded. Hosein et al. (2007) indicated that students eventually 

forgot about being video recorded and observed since the window showing the 

webcam image was covered up. This perhaps  may help in providing a more 

naturalistic approach to observing the students (Guba & Lincoln, 1981). This paper 

reports on proof-of-concept work on the use of remote observation of students using 

mathematical software.  
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Figure 1: Remote Observation Process 

METHODOLOGY 

To understand how remote observation can be used for investigating students’ learning 

of mathematics, a method was used to encompass both quantitative and qualitative data 

collection. The method followed that of quasi-experimental methods used in 

mathematical cognitive load theory (CLT) literature (e.g. Große & Renkl, 2006; Renkl, 

Atkinson, & Große, 2004; Schworm & Renkl, 2006). The quasi-experimental methods 

in CLT use a five-part procedure, usually to investigate to what extent students have 

learnt a topic (see Figure 2). 

Steps Instructions 

1.Demographic 

Questionnaire 

Students are asked to fill in a demographic questionnaire, including questions 

asking for mathematical level, age and gender 

2.Instructional/ 

Study Materials 

Students peruse  materials to understand the fundamental concepts required 

for the learning of the topic 

3. Pre-test  Students to determine what extent they have prior knowledge of the topic 

before the stimulus is provided for the experiment. The pre-test problems is at 

a lower difficulty level than the post-test problems 

4. Experiment Students are provided with the interventions/ factors that are being studied 

5. Post-test Students work on a set of questions to acquire quantitative data to compare 

the investigated interventions/ factors 

 Figure 2: Quasi-experimental method used by Atkinson, Renkl and colleagues  

There is sometimes a variation in the literature, in that the second and third step of this 

method may be interchanged (e.g. Große & Renkl, 2006; Renkl et al., 2004). The 

preference for this paper is the way it is presented as this means that the learning from 

the instructional/ study materials do not have to be taken into account when comparing 

data between the pre-test and the post-test. This quasi-experimental design is used for 

collecting mainly quantitative data but by added on talk-aloud strategies Ericsson & 

Simon (1984), interviews and videoing, qualitative data is also collected.  
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Data collection in remote observation 

In order to investigate remote observation as a method for observing students learning 

when using mathematical software, a simple mathematical topic was chosen: expected 

values. Expected values area is part of decision theory in operations research where 

probabilities are used to compare and determine best options. The aim of the study was 

to determine to what extent students may learn differently depending on the 

problem-solving software they employ. The software chosen for learning expected 

values was an Excel spreadsheet in which three types of spreadsheet calculators were 

used (coded using Visual Basic for Applications, VBA). Excel was chosen as it is 

familiar to many students and thus minimized the effect that familiarity with the 

software might have on the learning of the topic. The three types of spreadsheet 

calculator were black-box, white-box and grey-box. Black-box calculators are 

considered to be software in which calculations are performed without showing steps 

whilst grey-box calculators perform calculations showing the steps. White-box 

calculators allow the students to interact with the software at each step to determine the 

next action when calculating the answer. 

The consent form for students participating in a remote observation study is 

problematic as signed consent is difficult to obtain when students are at a distance. In 

this study prior to the scheduled experimental time, students were required to fill in 

their names in a web-consent form and then submit the webpage. However, this meant 

there were no guarantees that this was indeed the student filling in the form. Perhaps, to 

circumvent this problem, the participants should also enter their email address, so that 

a confirmation email of their consent can be sent to them. However, to remedy this 

problem during the actual experimentation period students were asked for permission 

again as to whether they consented to be video and audio recorded via instant 

messaging and there was no objection. 

The demographic and pre-test questionnaires were also produced as web pages. The 

links to the consent form and demographic questionnaires were emailed to the students 

prior to experimental period to fill in and submit. The pre-test was based solely on 

simple probability since Renkl et al. (2004) suggested using a level of difficulty that 

was lower than the post-test. Only when these two questionnaires were completed, an 

email was sent to the student to set up a date and time for the experiment. This was 

done to minimize experimental time required by the student and provided more 

flexibility. The pre-test questionnaire link was provided to the student via an IM and 

was filled in during the experimental period. The instructional/ study materials 

included information on how to use the spreadsheet calculators and guidance on 

expected values. The instructional materials, the practice questions and post-test 

materials were sent prior to the experiment so that students could print these and use it 

as a reference during the experiment. They were also told that it was not necessary to 

read these materials prior to the experiment. This reminder was placed to minimize 

students preparing or learning the topic prior to using the software. During the 

experiment, students were given time to read through the instructional materials on 
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expected values and the software materials. Although this study used only 6 students 

for understanding the remote observation process, a rotational confounded study 

design (Campbell & Stanley, 1963) was tested, where each student used the three 

spreadsheet calculators in the 6 permutations (see Figure 3).  

Student Calculator Calculator Calculator 

1 White Black Grey 

2 Grey White Black 

3 White Grey Black 

4 Grey Black White 

5 Black Grey White 

6 Black White Grey 

Figure 3: The order that the spreadsheet calculators were used by each student 

The students were allowed to use a practice question for testing the three spreadsheet 

calculators and also practice the talk-aloud strategy which constituted step 4 of the 

CLT method. The practice session is similar to that done by San Diego et al. (2006) in 

their user-lab work. Students were required to solve the various problems using the 

three spreadsheets calculators and entering their answers into a spreadsheet. There 

were 9 problems in the post-test: the first 6 problems were multiple-choice whilst the 

last three questions required the entering of the answer along with an explanation. The 

answer sheet for the post-test used a spreadsheet for this purpose. Following the 

post-test a short interview was conducted with the students to elicit their opinions on 

the three types of calculators and on expected values. 

ILLUSTRATION OF DATA COLLECTED 

Quantitative Data 

Firstly from the pre-test and post-test questionnaires, quantitative data was collected in 

which a marking scheme was used to allocate points to the student. These points can be 

used for further statistical analysis if a large sample is used to compare the different 

factors. Although 6 questions were multiple-choice, the researcher can revisit the video 

and audio recordings to determine how students acquired their answers for allocating 

points, as in some cases the students provided the correct answer, although their 

reasoning and method were sometimes wrong. Interestingly, students often neglected 

to use the spreadsheet calculators and opted instead to use pen and paper or a calculator. 

This data was thus lost and makes it difficult to compare spreadsheet factors, 

highlighting an important limitation of remote observation.  

Qualitative Data 

However, the qualitative observational data proved to be quite useful and can be used 

to triangulate with the quantitative data. From the six students, an episode is illustrated 

on the type of data that can be collected and what analysis can be performed. Figure 4 

presents data from a student (no. 6) doing the practice question during the experimental 

session.  
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Figure 4: Transcript data corresponding to audio and video data recorded from the 

remote observation exercise for the Excel spreadsheet 

The upper left-hand corner of the figure shows the practice question whilst the upper 

right-hand corner shows the Excel spreadsheet that both the researcher and the student 

can see. Below this, a transcript of the student’s utterance is shown along with the 

timeline in the experimental period. The actions of the student are also noted after the 

experiment. These actions, such as the clicking and entering of data, can be seen from 

watching the screen capture video, whilst the actions such as reading printed materials 

are noted through the webcam video. A webcam picture of a student reading printed 

materials is shown to the side of the transcript. In this particular episode, we note that 

in this practice question the student is looking at the black-box spreadsheet and there 

seems to be some confusion as to what to do. The data shows that from time 14:17 

upon entering the black-box calculator spreadsheet, the student decides to read back 
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the question and then tries to understand what the term ‘expected value’ means before 

proceeding to click the buttons to see what happens (15:05). We note that the student 

was able to achieve the answer (“I wasn’t paying any attention to what I was doing 

there at all and I’ve got an answer”, 15:14). Although the student claims later that they 

did this “without any comprehension whatsoever” (15:40), we note that at 15:14 they 

were able to tell which was the best game without clicking the ‘best button’, and this 

was part of the object of the task. Thus, this task shows that for the black-box 

spreadsheet calculator, although a student may be uncertain what the command buttons 

are used for with their limited understanding of the mathematical concepts and the ease 

of use of software which comes with a black-box type spreadsheet, the student can still 

work towards achieving the answer.  

Looking at other students utterances using the three calculators, all students felt some 

amount of confusion when starting with all three calculators, but students were less 

likely to know what to do when they started off with the white-box calculator (students 

1 and 3). However, most students who used white-box after the black-box and 

grey-box spreadsheets, were still uncertain on how to calculate expected values and 

had to check back the instructional materials (student 6) or intuitively guess what to 

(student 4 felt that multiplication would be the best arithmetic operation). It appears 

from this limited study that whilst black-box and grey-box calculators may help the 

students in calculating the answer, it does not help in understanding the steps. Even 

though the grey-box showed the steps, only two students (students 2 and 4) took time 

to look through to see what the steps meant, this may mean since the solution was 

provided for them that students did less self-explanations to seek understanding 

(Schworm & Renkl, 2006).  Also, when using the white-box calculator students found 

that after understanding the steps, that the iterations became tedious and this may 

impede learning (Renkl et al., 2004). 

DISCUSSION 

Remote observation provided some challenges when trying to observe students 

learning new areas without them having any prior indication of the materials. Although 

students here were asked to print out the instructional materials, students could have 

easily been redirected to another webpage where they could read the materials.  

However, this would require them switching between windows when doing the 

post-test questions and perhaps creating a higher split-attention effect Mayer & 

Moreno, 1998; Sweller & Chandler, 1991) than that of between paper and screen. 

When using paper and screen, students are able to have a direct comparison without the 

need to hold information in their working memory between one window and the next. 

Students can divide their screens to accommodate both of these windows, but would 

only be successful if their screen is large enough to accommodate sufficient 

information to be seen on both windows without requiring them to hold information in 

their working memory whilst they scroll down the windows.  
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Further, although Excel is used here, in classroom/course situations more sophisticated 

software such as computer algebra systems may be investigated. It was noted that some 

students chose to use pen and paper for working out some problems or the calculator on 

the computer. In face-to-face observation environments, such actions can be recorded 

in field notes (e.g. Pirie, 1996), but in remote observation the actions might be out of 

the field of view of the webcam. Meanwhile, in their user-lab, San Diego et al. (2006) 

used a Tablet PC to record writing and sketches, but this equipment is not available in 

typical student settings. So unfortunately under this remote observation process this 

data is lost unless special requests are made that the student post or scan these and send 

them to the researcher. Or a directive can be made to ensure that students only use 

software but this may hamper their natural learning process as well as defeat the 

purpose of observing students in their natural learning environment (Guba & Lincoln, 

1981). Also, remote observation for quasi-experimental methods does not lend itself 

easily to statistical analysis which requires large sample sizes. In this paper, students 

generally took between 1 ½ to 2 hours to complete the exercise and thus if a larger 

number of students is expected, a rotational design should be used to minimize the 

number of remote observations and also decrease the time required for tasks to be 

accomplished to probably between ½ to 1 hour if possible.  

CONCLUSION 

Remote observation for capturing students’ use of software when learning 

mathematics seems a viable option where there is an inability to bring students to 

user-labs and other laboratory settings or go to them. Useful qualitative and 

quantitative data can be collected. Particularly for the qualitative data, talk-aloud 

strategies can still be employed and the actions that students undertake in the 

mathematical software is able to be observed and recorded, however, the recording of 

students activities outside of the sphere of the shared application software is lost. 

Therefore, in research such as this for understanding students use software for 

problem-solving, researchers are not limited to students in a particular setting but to 

any student connected to the internet that will allow them to collect rich qualitative and 

quantitative data. 
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GEOMETRIC CALCULATIONS ARE MORE THAN JUST THE 

APPLICATION OF PROCEDURAL KNOWLEDGE 

Hui-Yu Hsu 

University of Michigan, U.S.A  

 

Calculations are often viewed as the application of procedural knowledge or algorithms. In 

this paper, I argue that geometric calculations can be more than that. To prove this 

assumption, firstly I analyze a geometric calculation using the theoretical framework of 

proof schemes proposed by Harel and Sowder (1998). The theoretical analysis shows that 

solving a geometric calculation can provide the opportunities to learn transformational 

observations just as geometric proofs do. Secondly, by analyzing instruction data, I report 

how a teacher conveys the opportunities to learn transformational observations in terms of 

scaffolding students in recognizing the geometric properties the diagram possesses and in 

inferring new measurements inside the diagram. In doing so, the teacher expects students to 

see the need for using transformational observations to form a solution.   

INTRODUCTION 

Geometric proofs and reasoning are important topics in mathematics learning and 

teaching. The National Council of Teachers of Mathematics (2000) recommends 

helping students learn reasoning from an early age and become capable of reasoning 

and performing proofs before the end of 12
th
 grade. Among the materials for learning 

geometric proofs, geometric calculations are pervasively used in geometry lessons 

and are often used as a type of questions on achievement tests (e.g., TIMSS, 1999; 

NEAP, 1989). Some studies in psychology also employ geometric calculations as 

task designs for investigating human thinking (Ayres & Sweller, 1990; Sweller, 1988, 

1989). The definition of a geometric calculation can be derived from literature as the 

numerical calculations within a geometric environment. (Healy & Hoyles, 1998; Katz, 

1993; Küchemann & Hoyles, 2002)”. Because of the geometric setting, solving a 

geometric calculation requires solvers to manage several types of information (given 

verbal information, visual information, calculating or writing information) and may 

also require solvers to reason several steps before obtaining the final answer. The 

complex problem-solving process drives a geometric calculation away from the 

procedural calculation.  

However, while research on teaching and learning proofs has become the main 

stream in mathematics education, research on geometric calculations has still 

received little attention, especially its relationship with geometric proofs. Hence, the 

first purpose of this paper is to analyze geometric calculations to prove that geometric 

calculations can provide the learning opportunities just as geometric proofs do. The 

second purpose is to investigate how the instruction conveys these learning 

opportunities to students when teaching a geometric calculation. 
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THEORETICAL FRAMEWORK AND ANALYSIS 

Harel and Sowder (1998) propose a conception map in which they categorize 

different levels of students’ schemes about proofs. Among these proof schemes, the 

transformation proof scheme is the one that students are expected to have when 

learning proofs. Transformational proof scheme is described as follows: 

Transformational observations involve operations on objects and anticipations of the 

operations’ results. The operations are goal-oriented. They may be carried out for the 

purpose of leaving certain relationships unchanged, but when a change occurs, the 

observer intends to anticipate it and, accordingly, intends to apply operations to 

compensate for the change (p. 258). 

From the explanation above, the major characteristic of the transformational proof 

scheme is the ability to dynamically manage mental images for forming a valid 

solution. Before finding a valid solution, solvers may have some initial thoughts. 

These initial thoughts are verified by the operations of transforming these images and 

are governed by deductive reasoning.  

The following example illustrates how a geometric calculation can possess the 

opportunities to learn or apply transformational observations. 

 Given information: 

AD = AB = BC . 

Given that ∠6=130˚ 

Find the measurement of ∠2. 

Figure 1: A geometric calculation for finding angle measurements 

Solving the problem in Figure 1 requires students to find several unknowns before 

obtaining the final answer. Students need to visualize the diagram in terms of de-

composing the diagram and searching for their corresponding geometric properties 

that are used to find the final answer. For example, the position of triangle ABC is 

not typical as most of isosceles triangles do. Students may need to recognize ∆ABC 

as an isosceles triangle by transforming the sub-diagram mentally for obtaining the 

property that ∠4 and ∠3 are congruent. 

The transformational observation used to complete this task is to identify the 

relationship between ∠3 and ∠1 as well as the relationship between AC and AD. By 

looking at the diagram, one may think that ∠3 = ∠1 because AB and AC look 

congruent. However, students who possess the transformational observation can 

identify that this assumption of AB=AC and ∠3 = ∠1 cannot be true because AB 

equals AD, ∠5 equals ∠1, and triangle ∆ABD is isosceles. If ∠3=∠1, then the 

segment AC should be dynamically moved and overlapped with segment AD as 

Figure 2 shows. Rotating segment AC to segment AD allows students to reject the 

possibility that AB=AC as well as ∠1=∠3. 
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Figure 2: The movement from AC to AD in the case that AB=AC and AB=AD 

In addition, using transformational observation to identify the relationship between 

AC and AD helps students to evaluate and monitor their own problem-solving 

strategies. The dynamic observations on the diagram that AB≠AC and ∠1≠∠3 may 

also inform solvers that ∠4 must be smaller than ∠BAC as well as that ∠BAD equals 

the sum of ∠4 and ∠2. 

Hence, this example verifies that geometric calculations can possess the opportunities 

to learn transformational observations.   

METHODS 

Data 

The data sources in this study were the videos collected from Taiwanese 9
th 

grade 

geometry classes. Totally 8 lessons were taped during the summer in 2006. Among 

these video lessons, I picked one lesson in which several geometric calculation tasks 

were discussed by the teacher, Nancy
1
, and her students. The instructional goal of this 

lesson was to discuss several geometric calculation problems students had in the test 

sheet. The most common activity type Nancy used in this lesson was triadic dialogue 

(Lemke, 1990), the dialogues that “teachers ask questions, call on students to answer 

them, and evaluate the answers (p. 217)”. Sometimes, Nancy also called students to 

the blackboard to share their solutions with whole class. 

Furthermore, I narrowed the analysis to one special episode where Nancy gave 

instruction on a geometric calculation that possessed the opportunities to learn 

transformational observations. The geometric calculation in this episode is described 

as follows. 

 As the diagram on the left shows, a rectangle 

ABCD can be folded along the segment EF 

to move point A and point B to their new 

positions A’ and B’. If angle EGB=45˚, 

GFB’=45˚, and AB=8 centimeters, find the 

area of ∆EFG=_________. 

Figure 3: The task requires the application of transformational observations 

                                                 
1
 Nancy is a pseudo name. 
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The problem above was not easy. Before Nancy’s explanation, only 2 students could 

solve it by themselves. One of the difficulties in solving this problem was to apply 

transformational observations in terms of constructing auxiliary lines and finding the 

measurements by applying their corresponding geometric properties. The diagram in 

Figure 4 illustrates an example of the application of transformational observations. 

 

 

 

 

 

 
Figure 4: One of the solutions with the application of transformation observations 

Knowing where to construct auxiliary lines on the diagram and anticipating the 

operations results are demanding. For finding the area of ∆EFG, one may need to 

construct the segment FS as the height of the ∆EFG by moving B’A’ parallel to FS 

such that FS=B’A’. Another construction is to draw segment GR perpendicular AD 

to form ∆ERG. This construction is more difficult than constructing FS because the 

need for constructing GR cannot directly be seen. Students have to infer 

∠GED=∠EGF=45˚ firstly by applying alternative interior angles theorem. Then they 

recognize the need to construct GR because GE can be found only in the condition 

that one applies the isosceles right triangle property with the information of length 

GR. After all, the area of ∆EFG can be known. 

Data Analysis 

The videos of lessons were analyzed by using discourse analysis tools. I used the 

manifest content approach defined by Erickson (2007) that derived from subject 

pedagogical knowledge. When reviewing videos, I focused on the subject matter 

content manifested in talk and in written symbols as well as the physical actions, 

gestures, and nonverbal information (Erickson, 2007). 

In order to investigate the meaning of instruction with respect to multiple aspects, I 

used the multimodal framework (Thibault, 2000) to analyze the transcription. The 

multimodal transcription revealed the text’s meaning in which the distinct semiotic 

resources were co-deployed and co-contextualized in making a text specific meaning 

(Thibault, 2000). The multimodal transcription I used included the visual frames of 

the instructions, the interaction between diagrams and speakers, kinetic actions 

speakers took, and nonverbal information in the transcription.  
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FINDINGS AND DISCUSSION 

How Nancy scaffolded students in learning transformational observations 

This episode of how Nancy scaffolded students in learning transformational observation 

when solving the geometric calculation can be divided into three major stages. 

The first stage was to help students to have background knowledge of geometric 

properties that would be used to infer new measurements on the diagram later. 

Nancy: Pay attention to here, students. Like this folding
2
 

paper problem [uses gesture to show the action 

of folding]. There are many we need to know. 

For example, we do not know any numbers here 

[points to the diagram]. But because this part 

[points to ABFE] flips and turns and becomes 

this piece [points to A’B’FE]. So, these angles 

should be right angles [draws right angle marks 

on angle B’, angle A’, angle B and angle A]. (.) 

The quadrilateral [uses gesture to outline four 

sides of ABFE] and this quadrilateral [uses 

gesture to outline four sides of A’B’FE] should 

be what? (.)  

SG: Congruent. 
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Nancy: Congruent.  

The instructional goal in this stage was to help students to recognize the congruence 

of quadrilateral ABFE and A’B’FE as well as the corresponding sides and angles 

(e.g., ∠AEF=∠A’EF). The way Nancy conveyed the congruent properties to students 

was by using gestures (e.g., flipping, pointing, re-drawing) with the diagram. The 

actions helped students to visualize the diagram and to recognize where Nancy was 

talking about. In doing so, the cognitive load of re-interpreting the meaning of labels 

by “looking” and “reading” the diagram was also reduced. 

In the second stage, the instruction focused on searching for new measurements. 

Nancy asked students to infer any new measurements by applying these geometric 

properties students acquired in the first stage.  

Nancy: Now, let us see it. What are the angle measures this problem gives us? 

[Watches test sheet] This angle is 45˚ [writes 45˚ on angle A’FB’] and this 

angle is also 45˚ [writes the 45˚ on angle EGF] (1.0). I will get some 

information. (.)  We can find a lot of new angle measurements. Now I think we 

should not just focus on this problem. Students, please tell me. (.) According to 

what we have done and the given information, what can you find in the 

diagram? (2.0) 

                                                 
2
 Notes for all transcription in this paper: (.) short pause; (number) longer pause lasts the number of 

seconds; (inaudible) words can not be clearly heard; _____emphasis of the words; [] teacher or 

students’ writing or physical actions; SG: students group. 
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Although the purpose of searching new measurements was to find the area of ∆EFG, 

Nancy told students that they should not be constrained by this problem. They could 

infer any new measurements based on the given information and the geometric 

properties they found in first stage. One assumption of why Nancy did this in this 

episode may be that she viewed that the ability to infer new measurements by 

applying geometric properties was basic and important. She might think that even 

though the problem-solving strategies students used might not be the best ones, 

students might still be able to find the final answer eventually. 

In addition, after one student failed in finding the measurement of angle EFG, Nancy 

used the gesture of pointing to inform whole class that they could find new 

measurements in another place. 

Nancy: There are many other obvious angle 

measurements we can find, aren’t there? 

[Points to angle A’, angle B’, angle C, and 

angle G] (1.0) Ok, Lily
3

, can you find 

something? 

Lily: ……. 

Nancy: The unknowns of angle measurements in this 

problem have not been found. (.) What angles 

can you find? (.) 

 

45  

45  
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Lily: These angles [points to angle AEF and FEG] 

Nancy’s pointing here implies that her dialogue of “what can you find” in previous 

transcription was not really an open-ended question. While Nancy told students not to 

constrain themselves in inferring new measurements because of the unknown asked 

by this problem, the searching for new measurements was still under the control of 

helping students recognize the need to construct the auxiliary lines. 

The final stage was the instruction of how to construct auxiliary lines. After students 

recognized that the finding of angle measurements of ∆EFG was not enough for 

completing the task, Nancy started to instruct students how to construct the auxiliary 

lines. 

Nancy: Is this a right triangle?  

SG No. 

Nancy: This is an isosceles triangle [outlines three sides of ∆EFG]. But the 

angles of this isosceles triangle are not “perfect”. Right? (.) You can see 

67.5˚ [points to angle FEG]. 67.5˚ [points to angle EFG], and 45˚[points 

to angle EGF]. (.) So, how can you find the area of this triangle? (1.0) 

Then, can you tell me the formula of triangle area? 

SG Base times height divided by 2. 

                                                 
3
 Lily is a pseudo name. 
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Nancy Base times height divide 2. Ok, the base. (.) What is the base? What side 

should we use as the base? (.) The height. (.) What side should we use as 

the height? (.) Now the problem is that we need to do more. (.)  The base 

is unknown. Height is unknown. Right? So we need to keep looking.  

The transcription above shows that knowing all angle measurements of ∆EFG was 

not enough for finding this triangle area. Students needed to infer more information 

by applying transformational observations. The following transcription is an example 

of how Nancy taught students to construct an auxiliary line and use it as the height of 

the triangle EFG. 
Nancy: 

 

 

45˚ [writes 45˚ on angle GRE]. Is that ok? (.) 

45˚. Pay attention here. This side [writes 8 

with CD] is 8 and this side [writes 8 with 

A’B’] is also 8. So, the key point in this 

problem is to (.) [Picks up another color pen] 

do what? (1.0) 

SG: Draw a line. 

Nancy: Draw a line. [Draws a perpendicular line 

through point G] 

………….. 

Nancy: Do you see the height? (.) [Points to RG]  

SG ….(inaudible) 
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Nancy Height is this segment [uses gesture to move 

RG parallel to EP]. 

The gesture of moving RG parallel to EP helped students to visualize how to 

construct the lines and its relationship with relevant geometric properties. What’s 

more. After Nancy guided students to find the area of ∆EFG, she also asked one 

student to share her solution that was different from her demonstration to whole class. 

In doing so, students were able to see different solutions with different application of 

transformational observations when solving a geometric calculation.  

CONCLUSION AND REMARK 

The ability to use transformational observations to solve this geometric calculation is 

heuristic (Lakatos, 1976; Pólya, 1945). The theoretical analysis shows that geometric 

calculations can provide the opportunities to familiarize students with 

transformational observations and heuristic reasoning. The empirical analysis also 

shows that the way a teacher scaffold students in learning transformational 

observations as well as heuristic reasoning (Pólya, 1945) is to make acquainted the 

geometric properties and to infer many new measurements in the diagram. In doing 

so, the teacher expects students to see the need of applying transformational 

observations and to learn the heuristic reasoning as well.  
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CONSTRUCTING PEDAGOGICAL REPRESENTATIONS TO 
TEACH LINEAR RELATIONS IN CHINESE AND U.S. 

CLASSROOMS 

Rongjin Huang and Jinfa Cai 

University of Macau, China / University of Delaware, USA 

 

This study investigates Chinese and U.S. teachers’ constructions of pedagogical 

representations by analyzing the video-taped lessons from the Learner’s Perspective 

Study, involving 10 Chinese and 10 U.S. consecutive lessons on the topic of linear 

equations or linear relations. This study allows not only for the examination of what 

pedagogical representations Chinese and U.S. teachers construct, but also for the 

examination of the changes and progressions of constructed representations in these 

Chinese and U.S. lessons. This study is significant because it contributes to our 

understanding of the cultural differences involving U.S. and Chinese students' 

mathematical thinking and has practical implications for constructing pedagogical 

representations to maximize students’ learning. 

THEORETICAL BASIS OF THE STUDY 

Cross-national studies provide unique opportunities for understanding how classroom 

teaching affects students’ mathematical thinking, and then such studies provide 

diagnostic and decision-making information about how we can improve students' 

learning (Bradburn & Gilford, 1990; Cai, 2001; Ma, 1999; Stigler & Hiebert, 1999).  

Previous studies have revealed remarkable differences between U.S. and Chinese 

students' mathematical thinking and reasoning (Cai, 2000). Yet, we are just beginning 

to uncover how teaching in the two cultures may contribute to the cross-national 

performance differences. Because the use of mathematics representations is an 

important instructional feature that exerts great influence on students’ mathematical 

thinking and reasoning, studies comparing the use of mathematics representations in 

U.S. and Chinese classrooms can provide us with insights into how teaching in 

different cultures may affect students’ learning and mathematical thinking.     

Pedagogical representations refer to the representations that teachers and students use 

in their classroom as expressions of mathematical knowledge. They help explain 

concepts, relationships, connections, or problem solving processes. In mathematics 

instruction, some representations might be more effective than others as expressions of 

knowledge and thinking tools to explain problem-solving processes (Cobb et al., 1992; 

Leinhardt, 2001). Choosing pedagogically sound representations is an important 

decision to make when a teacher selects instructional strategies for the mathematics 

classroom.  To select a desirable pedagogical representation, a teacher should integrate 

at least two perspectives for consideration: the nature of the mathematical content 

being taught and the minds of students learning the content (Ball, 1993).  First, the 

representation should highlight the features of the mathematics content the teacher 
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wants to teach.  Second, the representation should provide students with a familiar and 

accessible context in which they can extend and develop their capacity to reason and 

understand the idea. In mathematics classroom practice, Perkins and Unger (1994) also 

found that a powerful and effective representation often bears these two features. On 

the one hand, they argued, its extraneous clutter is often “stripped” in order to highlight 

the critical mathematical characteristics. On the other hand, it is also “concrete” to 

learners.  Although it is not clear yet if there is a universally “good pedagogical 

representation” in terms of its strippedness and concreteness in teaching a mathematics 

idea to students in different cultural contexts, it is generally agreed that the teachers’ 

selection of desirable pedagogical representations of specific mathematics knowledge 

reflects the teachers’ conceptions, knowledge of mathematics, and their beliefs about 

learning and teaching (NCTM, 2001).  Put another way, the pedagogical 

representations that teachers develop is related not only to the theory and research 

about student understanding, but also to teachers’ beliefs about the functions of 

particular representations in students’ learning and understanding (Greeno, 1987).  

Pedagogical representations are effective in classroom instruction only if they are 

either known by students or easily knowable (Leinhardt, 2001).  

Recently, an attempt has been made to compare Chinese and U.S. teachers’ 

conceptions and constructions of pedagogical representations in mathematics 

instruction (Cai, 2005; Cai & Wang, 2006). For example, Cai (2005) examined U.S. 

and Chinese teachers’ construction, knowledge, and evaluation of representations to 

teach the concept of arithmetic average and found that the Chinese teachers and U.S. 

teachers in the study used representations differently.  For example, while the Chinese 

teachers used concrete representations exclusively to mediate students’ understanding 

of the concept of average, the U.S. teachers tended to use concrete representations not 

only to foster students’ understanding of the concept but also to generate data. Cai and 

Wang (2006) further examined U.S. and Chinese teachers’ construction, knowledge, 

and evaluation of representations to teach the concept of ratio and found the 

generalities of U.S. and Chinese teachers’ construction of pedagogical representation 

across the content areas.  

In this paper, we examined how U.S and Chinese teachers construct representations to 

teach linear relations over a sequence of video-taped lessons. This allows not only for 

the examination of what pedagogical representations Chinese and U.S. teachers 

construct, but also for the examination of the changes and progressions of constructed 

representations in these Chinese and U.S. lessons.   

METHODOLOGY 

Data resources 

The data for this study came from the Learner’s Perspective Study (LPS for short), 

which examines the patterns of participation in competently taught seventh or eighth 

grade mathematics classrooms in thirteen countries in a more integrated and 

comprehensive fashion than has been attempted in previous international studies 
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(Clarke et al., 2006 ). In this study, we selected one Chinese school data set and one 

U.S. school data set. The main topics taught over 10 consecutive lessons in the Chinese 

and U.S. classroom are shown in Table 1. 

Phase  Chinese lessons U.S. Lessons 

1 
Concept of linear equations with two 

unknowns and its solution (CH1) 

Concepts of linear and non-linear 

relations (US1, US2) 

2 

Concepts of coordinate plane and the 

coordinates; graph of linear equations with 

two unknowns (CH2-CH4) 

General features of linear relations and 

multiple representations for linear and 

non-linear relations (US3, US4) 

3 
Concepts of system of linear equations with 

two unknowns and their solutions (CH5) 

Comparison and contrast of different 

representations (US5-US8) 

4 

Methods of solving linear equation with two 

unknowns such as the elimination method 

and the graph method(CH6-CH10) 

Comparison and contrast of different 

representations; application of linear and 

non-linear relations (US9, US10) 

Table 1. Knowledge construction in Chinese and U.S. lessons 

The Chinese school was from Shanghai, which is a key school at the district level, and 

the U.S. school was in top 20 percentile of schools in the state of California. The 

Chinese teacher, Mr. Tang, has a bachelor degree in mathematics from Teacher’ 

Education Institute and has 24 years of teaching experience. There were 55 

seventh-grade students in the classroom; the textbook used was the only unified 

official textbook in Shanghai. The duration of each lesson was approximately 45 

minutes. The U.S. teacher, Ms. Nancy has a bachelor degree in mathematics with some 

teacher education training.  She has more than 15 years of teaching experience.  There 

were 37 grade eight students in the classroom. The textbook used was the Integrated 

Mathematics (Algebra) published by McDougal Little Inc. The duration of each lesson 

was approximately 50-minutes. 

Data analysis 

The data was analysed in two dimensions. First, we analyzed how knowledge was 

constructed during ten Chinese and ten U.S. consecutive video-taped lessons. Then we 

focused on the first four Chinese lessons (CH1- CH4) and the middle six U.S. lessons 

(US3 - US8), which included extensive coverage of linear relations, for further 

examination of the instructional tasks and the pedagogical representations involved in 

these Chinese and U.S. lessons. The instructional tasks, or mathematical tasks, can be 

defined broadly as projects, questions, problems, constructions, applications, and 

exercises in which students engage. The instructional tasks provide an intellectual 

environment for students’ learning and development of mathematical thinking. 

Pedagogical representations of mathematics concepts were put into four categories: 

symbolic representation, numeric representation, tabular representation, graphic 

representation and verbal/literal representation. With respect to the code of 
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pedagogical representations, one researcher developed a coding system by using 

special video data analysis software, Studio-code through carefully watching the 

video-taped lessons. Then the first author did a careful check. If the first author did not 

agree the code in certain episodes, then, a discussion with the research assistant was 

conducted until an agreement was achieved. 

RESULT 

Knowledge construction  

Table 1 shows the sequence of how the topic was presented in Chinese and U.S, 

lessons. The Chinese teacher started with an introduction of the concept of linear 

equations and its solutions. He introduced the concept of rectangle coordinate planes to 

graph linear equations and then explained the concept of system of linear equations 

with two unknowns and its solution. After that, several methods to solve a system of 

linear equations with two unknowns were introduced and consolidated. It should be 

indicated that the Chinese teacher emphasizes the procedures for solving linear 

equations more than the concept involved.  The U.S teacher started by introducing the 

concept of linear and non-linear relations in general, and then the teacher discussed 

extensively the features of linear relations and focused on transformation of multiple 

representations of linear and non-linear relations through group activities.  Finally she 

applied the knowledge to solve word problems. The U.S. teacher intended to develop 

the concepts (linear and non-linear relations) and foster understanding of the features 

of linear and non-linear relations through multiple representations and students’ group 

work.  However, it is clear that the various activities that she used were to help students 

recognize the different representations, instead of using the representations to actually 

foster understanding of linear equations. 

Comparing the Chinese and U.S. lessons, there are a number of differences in terms of 

lesson structures. Chinese lessons were dominated with whole class instruction, while 

group activity dominated the U.S. lessons. In the U.S. classroom, the students were 

divided into several groups, and the lessons were delivered through group activities. In 

the Chinese classroom, the lessons were delivered through whole classroom teaching, 

although there was frequent peer discussion.  Each U.S. lesson included “warm-ups,” 

which were related to the new topic to be learned in the lesson, but not related to the 

topics in the previous lessons. In the Chinese lessons, all lessons started with a review 

of knowledge learned in the previous lessons.  This suggests that there were better 

connections between the Chinese lessons than between the U.S. lessons. In the U.S. 

lessons, the teacher usually did not present a summary for each lesson, while the 

Chinese teacher regularly summarized the key points of each lesson. 

In addition, the Chinese teacher emphasized on the procedures for solving linear 

equations.  That was not the case in the U.S. lessons.  The U.S. teacher put heavy 

emphasis on multiple representations, and transforming among different 

representations is the goal in several of her lessons.  That was not the case in the 

Chinese lessons.  We will examine the representations further in the next section.   
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Representation construction 

In this section, we examine representation constructions by comparing instructional 

tasks in six U.S. lessons (from US3 to US8), totalling around 300 minutes, with four 

Chinese lessons (from CH1 to CH4), totalling around 180 minutes.  These lessons were 

chosen because of their extensive coverage of linear relations.  The six U.S. lessons 

include 10 instructional tasks, and the four Chinese lessons include 23 instructional 

tasks. To examine the kinds of representations used, we looked at the total duration for 

solving each task as a whole. The proportion of different representations for each task 

in the U.S. classroom is depicted in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1. Distribution of representations in U.S. lessons 

The above figure shows that there is one task L3T1 for which five presentations (verbal, 
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L7T1 and L8T3) for which four representations were used. There are three tasks for 

which two representations were used, while there are two tasks for which one 

representation was used.  The order of popularity of using representations is as follows: 

verbal (100%), symbolic (80%), graphic (50%), tabular (50%), and numerical (10%) . 

Similarly, we can show the proportion of different representations for each task in the 

Chinese classroom in Figure 2. 

 

 

 

 

 

 

 

Figure 2. Distribution of representations in Chinese classroom 
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Obviously, the Chinese figures have a relatively “simpler” appearance. In one task 

(L4T2), there are four representations. There are three tasks (L1T1, L3T6 and L4T6) 

for which three representations were used.  There are fourteen tasks for which two 

representations were used, and there are five tasks for which only one representation 

was used. The order of popularity of using representations is verbal (70%), numerical 

(56%), symbolic (30%), graphic (26%), and tabular (4%).  

When comparing the construction of representation in the U.S and Chinese classrooms, 

it was found that the U.S. teacher preferred using multiple representations 

simultaneously (in 50% of the cases, more than three presentations were used), while 

the Chinese teacher preferred using one or two representations (in 83% of the cases, 

only one or two representations were used). In addition, verbal and numerical 

presentations were most commonly used and tabular representations were least 

commonly used in the Chinese classroom; however, the verbal, symbolic, graphic, and 

tabular representations were most commonly used and the numerical representations 

were the least used in the U.S. classroom.   

Ways of constructing representations 

Overall, we can present the development of representations of linear equations in the 

Chinese and U.S classrooms in the following diagram (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Representation development of linear relation in Chinese and U.S. lessons 
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symbolic linear equations) by making use of tabular and numerical representations. 

Thus, students may have a deep understanding of linear equations and its figures and 

also understand the ways of drawing a figure of linear equation by plotting two points 

for the linear equation. However, they may not realize that numerical and tabular 

representations are of the same importance as other representations.  

CONCLUSION 

With regard to the construction of representations when implementing instruction tasks, 

it was found that the U.S. teacher preferred using multiple representations 

simultaneously, while the Chinese teacher preferred using only one or two 

representations. In addition, verbal, symbolic, graphic and tabular presentations were 

most popularly used by the U.S. teacher while for the Chinese teacher verbal, numeric, 

symbolic and graphic representations were more popular.  Numerical representation 

was least frequently used by the U.S. teacher, while tabular representation was least 

frequently used by the Chinese teacher. In addition, the U.S teacher seemed to develop 

multiple representations simultaneously over subsequent lessons through different 

activities, such as visual sorting, manipulative drawing and matching, while the 

Chinese teacher tried to develop the concept of linear equations (symbolic 

representation) and graphs of linear equation (graphic representation) through solving 

problems (daily verbal problems and symbolic linear equations) by making use of 

tabular and numerical representations. Thus, the use of multiple representations 

appears to be an instructional goal for the U.S. teachers, while she is intended to use 

multiple representations as a means for students’ understanding of linear relations.  For 

the Chinese teacher, the multiple representations were used as a means to understand 

linear equations.     

The finding that the U.S teacher tried to treat all four representations equally and 

develop them simultaneously through different activities may explain why the U.S. 

students preferred to choose concrete strategies, drawing representations both for 

fostering understanding of concept and also for applying knowledge. However, the 

Chinese teacher paid more attention to developing symbolic and graphic 

representations by treating numerical and tabular representations as tools for 

developing other representations. This finding may explain why Chinese students 

preferred using symbolic and abstract representation to solve problems (Cai, 2005; Cai 

& Lester, 2005).   
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TEACHERS AS RESEARCHERS:  

PUTTING MATHEMATICS AT THE CORE 

 

Danielle Huillet 

 

Eduardo Mondlane University 

 

This paper analyses the teachers-as-researchers movement, showing that teachers 

research mainly focus on pedagogical issues. It reports on a study where teachers 

were researching aspects of mathematics for teaching limits of functions where 

mathematical and pedagogical issues were intertwined. It shows that it is 

uncomfortable for a teacher to deeply challenge his own teaching. 

 

THE TEACHERS AS RESEARCHERS MOVEMENT 

According to Elliott (1991), the teachers-as-researchers movement emerged in England 

during the 1960s, in the context of curriculum reform. Initially it focused on the 

teaching of humanities subjects, teachers working together in cross-subject teams. The 

research was not systematic, but occurred as a response to particular questions and 

issues as they arose. It aimed to improve practice rather than to produce knowledge.  

 

This movement extended in the 1980s in what is usually known as the teacher research 

movement, which main feature is that teachers are no longer considered as mere 

consumers of knowledge produced by experts, but as producers and mediators of 

knowledge, even if it is a local knowledge. In most of their research, teachers 

focussed on their own classroom practice.  

 

In Mathematics Education, research has now become an important part of many teacher 

education programmes all around the world. It also has been the subject of debate 

within the mathematics educators’ community and of several papers presenting results 

of these programs or discussing certain aspects of teacher research. Most of these 

publications focus on teachers’ practices. 

 

In 1988, a working group called “Teachers as Researchers” started at PME. This group 

met annually during nine years and published a book based on contributions from its 

members (Zack, Mousley & Breen, 1997), presenting different experiences of teachers’ 

enquiry in several countries and using several methods, which aim was basically to 

improve practice. 

 

Adler (1992) reports the case study of a middle-class mathematics teacher researching 

his interactions with learners and their interaction with each other, during his 

postgraduate studies. Through this research, he realised that he dominated classroom 

interaction and that his mediation was gendered.  
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Hatch & Shiu (1998) reports the case study of a primary school teacher researching 

her own practice through the analysis of class transcript and a reflective journal as 

part of an in-service course. They argue that she contributed not only to developing 

knowledge of her own practice but potentially to the accumulated knowledge of the 

research community. 

 

Halai (1999) reports on action research conducted by mathematics teachers in 

Karachi and involving university researchers as facilitators. They also used 

participant observation, field notes, and reflective journals. She claims that this action 

research project promoted learning and professional growth not only of the teachers 

but also of the university researchers. 

 

Edwards & Hensien (1999) describes action research collaboration between a middle 

school mathematics teacher and a mathematics teacher educator, involving 

observation and discussion of lessons and exchanging roles in the classroom. The 

analysis of the teacher’s narrative of this collaboration as well as the teacher’s regular 

reflections on her beliefs and practices were important to her process of change. 

 

Jaworski (1998) describes the MTE (Mathematics Teacher Enquiry) project, which 

involved six secondary mathematics teachers undertaking their own research 

independently of an academic programme. These teachers were invited to identify a 

question they were interested in researching. Jaworski points out that, during this 

research, the teachers focused their attention on pedagogical issues, rather than on 

mathematical issues.  

Decisions about what mathematics should be done, what classroom tasks 

would be appropriate, and what outcomes would be desired, were a normal part 

of the teaching process, hard to extract as problematically related to the 

research issues. (1998: 25) 

She asks the question “How might mathematics issues become more overt in the 

research project?” (1998: 29).  

 

In most of the papers presented above, the focus was on teachers’ classroom practices, 

independently of the knowledge to be taught. In all these projects, it seems that the 

mathematical content to be taught is taken for granted, and that teachers are not 

supposed to challenge it. They are only supposed to try to improve their teaching 

practices. A few articles mention some change, or some possible change, in teachers’ 

knowledge of mathematics.  

 

Mousley (1992) reports the results of a one-year course in an off-campus mode called 

MATHEMATICS CURRICULA. Course participants used cycle of action research 

in a chosen area of their change of practice. They were required to work with 

colleagues. A representative sample of sixty teachers was then contacted by mail, 
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telephone or a personal interview about the impact of the course. It was found that 

there was 

not only some ongoing restructuring of pedagogy, in terms of content, 

organisation and classroom interaction, but also growth of understanding about 

(1) the nature of mathematics, (2) the processes of teaching and learning of 

maths, (3) the power of institutional contexts of teaching and learning, and (4) 

the processes of pedagogical change. (Mousley, 1992: 138) 

 

Although the aim of this project was to improve practice, it also shows that through 

their research teachers’ knowledge on mathematics evolved, and that they became 

aware of the weight of institutional constraints.  

The notion of mathematics as a stable body of knowledge and skills to be 

transmitted and practiced became problematic. Questioning traditional 

classroom practices provided an incentive for teachers to confront given 

curriculum content. (1992: 139) 

 

Mousley concluded that 

participatory, experience-based research has the power to emancipate some 

teachers from taken-for-granted classroom routines which constrain and 

control mathematical learning. The dialectical interaction of reflection 

combined with social interaction allowed innovation in the nature of teaching 

and learning mathematics as well as in curriculum content. (1992: 143) 

This experience shows that through research and interaction teachers can be led to 

challenge institutional relations to mathematics.  

 

In the first edition of the International Handbook of Mathematics Education, Crawford 

& Adler suggest that:  

It seems possible if teachers and student-teachers act in generative, research-like 

ways, they may learn about the teaching/learning process, and about mathematics, 

in ways that empower them to better meet the needs of their students. (1996: 

1187) 

 

These authors seem to avoid the distinction between practical inquiry and more formal 

research, using the term “research-like ways”. The focus is on teachers’ personal 

learning by researching, not only their own practice, but also mathematics. They argue 

that, the quality of teachers’ mathematical knowledge being strongly influenced by their 

own experience as students, they need to unlearn the old conceptions of mathematics 

derived from their schooling experience. The experiences of “teachers’ voices” in South 

Africa and of a program of action-research with student teachers in Australia lead 

Crawford & Adler (1996) to conclude that research helps teachers to challenge their 

practice and their conception of mathematics. Student teachers doing action research 

“learn a great deal about mathematics as they work with their students to define and 

refine mathematical ideas and use them actively as a means to inquiry” (1996: 1200). 
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Another research project reporting changes in teachers’ knowledge of mathematics is 

the PLESME project (Graven, 2005), where mathematical knowledge and 

mathematics pedagogical knowledge were intertwined. “PLESME focused on the 

development of mathematical meaning and pedagogical forms simultaneously” 

(2005:219). Using this two-year INSET project as an empirical field for her research, 

Graven investigated the nature of mathematics teachers learning within a community 

of practice (2005:207). She argues that most of the literature on teacher development 

indicates a focus on teacher change. In the South-African context, the curriculum 

support materials call “for radical teacher change where old practice is completely 

replaced by new practice”. This view of teacher change is disempowering for 

teachers (2005: 223). On the other hand, the PLESME programme was based on a 

conception of learning as a life-long process, where teachers were expected to build 

their own knowledge. 

 

This non exhaustive review of papers about the teachers-as-researchers movement 

shows how different the experiences in this domain are, in terms of research topics 

and methodology. However, some common trends can be found in these reports.  

 

In the first place, they seem to share a common conception of teacher as a producer of 

knowledge and not as a mere consumer of knowledge produced by other individuals, 

particularly academics. 

 

Secondly, in most of these research projects, teachers worked together in groups, the 

research team being composed of either pre-service or in-service teachers. Interaction 

between teachers, or between teachers and mathematics educators, allowed them to 

deepen the analysis of their practices and difficulties. 

 

Finally, in all projects discussed above, teachers chose to investigate some 

pedagogical issue or some problem of student learning. It seems that when asked to 

choose a research topic, teachers question their own teaching, or their students’ 

performance and difficulties, but take for granted the content usually taught within 

the institution. 

 

LEARNING MATHEMATICS THROUGH RESEARCH 

In the research project reported here, teachers were researching different aspects of 

limits of functions. This project is based on the one hand on the study of the 

institutional relation (Chevallard, 1992) of the Mozambican secondary school with 

this concept, and on the other hand on a study of the mathematical knowledge which 

would enable a teacher to extend this institutional relation (mathematics for teaching 

limits of functions). 
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The study of the institutional relation of Mozambican secondary school with limits 

shows a dichotomy between a formal part, the ε-δ definition, which students are not 

asked to use in practice; and an algebraic part, the determination of limits, what most 

of students’ tasks are based on.  

 

Mathematics for teaching limits of functions includes the following aspects: (i) 

Scholarly mathematical knowledge on the concept; (ii) Knowledge about the social 

justification to teach this concept; (iii) Knowledge on how to organise the students’ 

first encounter with the concept; (iv) Knowledge on the practical block (tasks and 

techniques); (v) Knowledge about students’ conceptions and difficulties when 

studying this concept. In each of these components mathematical and pedagogical 

knowledge are intertwined. 

 

Four teachers researched a different aspect of mathematics for teaching limits 

involving both mathematical and pedagogical issues, and shared their findings in 

periodic seminars. One of them was an experienced Grade 12 teacher, who had taught 

limits at school, while the others were teachers in lower grades. All of them used their 

research for their Degree dissertation. I was their supervisor and the facilitator of the 

seminars. The teachers were also interviewed three times during the research process. 

All interviews and seminars were audio-taped and transcribed. 

 

Data analysis focused on five main aspects of mathematics for teaching limits: how 

to organise students’ first encounter with this concept, the social justification for 

teaching limits at school, the essential features of the limit concept (part of the 

scholarly mathematical knowledge), the graphical register (from the practical block), 

and the ε-δ definition (also from the scholarly mathematical knowledge). 

   

FINDINGS 

Data analysis for the five aspects mentioned above indicate that teachers’ knowledge 

evolved substantially for the first three aspects, but that difficulties remained for the 

two last aspects, the graphical register and the ε-δ definition. These difficulties were 

explained by a lack of deep understanding of basic mathematical concepts. For the 

first three aspects (which only involved general mathematical knowledge), reading 

books and mathematics education papers, and discussing their findings within the 

research group seemed to allow teachers to reflect on these issues and to make links 

between the limit concept and other mathematical concepts. However, when a deep 

understanding of basic mathematical concepts was required, such as for the use of 

graphs to study limits or the ε-δ definition, reading books and papers and discussing 

these issues within the research group did not allow teachers to overcome their 

difficulties.  

 

Furthermore, the Grade 12 experienced teacher faced more difficulties during the 

whole process. In fact, this teacher was in a less comfortable position than his 



Huillet 
 

PME31―2007 3-78 

colleagues. While the other three teachers were researching and challenging the 

institutional relation of Mozambican secondary school to limits of functions, he was 

also researching and challenging his own practice. For example, at some point he 

realised that he had taught L’Hôpital’s Rule before teaching derivatives and that 

students could not understand it. 

 

I remember that, well I gave tasks about limits, er … mainly, they were 

polynomial functions I think, well, for me, the practical way was, you know, use 

what we usually call L’Hôpital’s Rule, because it was practical and [sighing] but 

… after all, now I get to know that, well, how could I use that L’Hôpital’s Rule 

if the students did not learn derivatives? And limits come before derivatives … 

But … I saw that after all I was doing a mistake by that time … (Abel, 3
rd
 

interview) 

He then explained how he introduced limits to his students. 

I gave the definition, ok, I gave the rules, we go to the tasks. (…) Well, I was 

myself reduced to ... to that knowledge, thus, it’s how I learnt and it’s also what 

the textbook shows, and I’m going to pass it on [to students]. (Abel, 3
rd
 

interview) 

According to his discourse, it is clear that this teacher’s mathematical knowledge did 

not allow him to teach in a different way. It is now very hard for him to realise that he 

taught in a way students could not understand. This possibly explains why teachers 

researching their own practice seem to prefer to look at pedagogical issues or 

students’ difficulties. In that way they do not need to challenge their own personal 

relation to mathematics as much. This result highlights a limitation of teachers 

learning through research. 

 

CONCLUSION 

 

This paper reviews papers on teachers as researchers, showing that they mainly focus 

on pedagogical issues. It then reports a study where teachers researched aspects of 

mathematics for teaching limits of functions involving both mathematical and 

pedagogical aspects. This study puts into evidence that the teachers’ mathematical 

knowledge could not be taken for granted. For those aspects of mathematics for 

teaching which required a deep understanding of some basic mathematical concepts, 

the evolution of teachers’ knowledge through the research process was limited. 

Furthermore, the research process was more challenging for the experienced Grade 

12 teacher, whose research also challenged his own practice. 

 

I suggest that teachers be involved in research putting mathematics at the core: 

research on mathematics for teaching, based in both mathematical and pedagogical 

issues. In that way they will produce knowledge that helps them evolve their personal 

relation to mathematics and its teaching and learning, as well as hopefully improve 

their practice. Obviously I do not claim that they would necessarily teach in a 
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different way, as they would be exposed to institutional constraints, but that their 

personal relation to mathematics would enable them to teach differently.  
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CAN YOU CONVINCE ME: LEARNING TO USE 

MATHEMATICAL ARGUMENTATION  

Roberta Hunter 

Massey University 

 

In the current mathematics education reform efforts, teachers are challenged to 

develop discourse communities in which the students learn to construct and evaluate 

mathematical arguments collectively. In this paper I examined the interactional 

strategies used by a teacher to constitute a classroom context in which the students 

participated in the discourse of collective argumentation. I report on the way the 

teacher used student explanations as the foundations for building justification and 

validation of reasoning.  

INTRODUCTION 

Over the past twenty-five years within both an international and New Zealand context 

the teaching and learning of mathematics has undergone substantial changes in the 

way it is conceptualised. Increased focus has been placed on student communication 

of mathematical reasoning including the development and presentation of 

mathematical arguments. Advocated in the New Zealand policy document is a 

requirement that teachers “provide opportunities for students to develop the skills of 

presentation and critical appraisal of mathematical argument or calculation” 

(Ministry of Education, 1992, p. 23). Similarly, the American policy document 

emphasises the need for teachers to create classroom environments in which their 

students learn to “construct mathematical arguments and respond to others’ 

arguments” (National Council of Teachers of Mathematics, 2000, p. 18). These 

documents promote ambitious and challenging goals for change in the teaching and 

learning practices of many mathematics classrooms. They challenge traditional 

beliefs toward mathematics and its discourse as a non-contentious (Weingrad, 1998). 

They also challenge the media prevalent view of argumentation as oppositional 

behaviour considered to be interference to learning (Andriessen, 2006). Moreover, 

many teachers have not themselves experienced learning in such environments and 

nor is their role in them clear (Huferd-Ackles, Fuson, & Sherin, 2004). The research 

reported in this paper examines how one teacher engaged in a collaborative research 

project, purposely transformed the discourse practices used by her and that of her 

students. The focus of the paper is on the interactional strategies. I examine how 

those strategies were used to shift the discourse toward all students participating in 

collaborative argumentation. 

For the purposes of this study collaborative argumentation is a form of mathematical 

dialogue in which all parties work together to critically explore and resolve issues 

which they all expect to reach agreement on ultimately (Andriessen, 2006). 

Considerable evidence is now available of the beneficial effects of students 
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articulating their mathematical reasoning and inquiring and challenging the reasoning 

of others when engaged in productive collaborative argumentation (e.g., 

Manouchehri, & St John, 2006; Mercer, 2000; Wood, Williams, & McNeal, 2006).  

These many studies have provided evidence that when opportunities are made 

available to students to participate in rich forms of inquiry and argumentation, the 

quality of their own mathematical explanations and justification are enhanced. This is 

because argumentation is a powerful reasoning tool which allows the participants in 

the dialogue to refute, criticise, elaborate and justify mathematical concepts and facts 

and develop an understanding of the opposing perspectives as all participants work 

towards constructing collective consensus. Andriessen (2006) maintains that “when 

students collaborate in argumentation in the classroom, they are arguing to learn (p. 

443).  

Creating a classroom culture in which value is placed on collaborative inquiry and 

argumentation requires altering the students’ perceptions and beliefs about what 

mathematics is and how it is used (Manouchehri, & Enderson, 1999) but also their 

attitudes and perceptions of argumentation. Andriessen (2006) describes how many 

individuals link argumentation to an aggressive and oppositional form in which the 

goal is not to work together but rather to score points—a form of arguing which has 

little to contribute to mathematics education. However, engaging in collaborative 

interaction and using inquiry and argumentation is not something many students can 

accomplish easily without specific adult intervention (Rojas-Drummond, Perez, 

Velez, Gomez, & Mendoza, 2003). Therefore, it is vital that teachers as the more 

expert members of the classroom community take an active role in orchestrating a 

social environment in which the students “listen to one another, respect one another 

and themselves, accept opposing views, and participate in a genuine give-and-take of 

ideas and perspectives” (Manouchehri, & Enderson, p. 6).  

When students engage in ‘arguing to learn’ they are participating in activity grounded 

in the social and cultural practices of the classroom community and are learning to 

use a social language or speech genre which denotes a particular socially situated 

identity (Gee, 1992). However, without direct discussion of the structure of 

collaborative argumentation and its rules and norms some students may not be able to 

access the mathematical discourse and learning of the classroom. This paper explores 

the defining features of a classroom climate in which the teacher developed and 

extended student participation in mathematical argumentation. 

The theoretical framework of this study is derived from a sociocultural perspective. 

From this perspective mathematical teaching and learning is inherently social and 

embedded in active participation in communicative reasoning processes (Lerman, 

2001). In this environment, students successively gain increased levels of “legitimate 

peripheral participation” (Lave & Wenger, 1991, p. 53) as they access and use the 

discourse of inquiry and argumentation.  
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RESEARCH DESIGN 

This research reports on one teacher case study from a study which involved four 

teachers in a one-year collaborative teaching experiment. The study was conducted at 

a New Zealand urban primary school where students came from predominantly low 

socio-economic home environments. Students were predominantly of Pacific Nations 

and New Zealand Maori ethnic groupings with many of whom spoke English as their 

second language.  

Collaborative teaching experiment design (Cobb, 2000) was used in order to direct 

teacher and researcher attention on the social and analytical structuring (Williams & 

Baxter, 1996) of the mathematical discourse. In recognition of the two central 

characteristics of teaching experiment design research; the iterative cycles of analysis, 

and an improved process or product; a tentative communication and participation 

trajectory was used to map the progression of the discourse toward argumentation 

and to provide focus for the subsequent shifts in participation and communication. 

For example, after Ava (pseudonym for the teacher) had completed teaching a an 

early algebraic unit of work and before she returned to teaching a fractional number 

unit, the types of questions Ava and the students could use and the interactions 

anticipated to scaffold a further shift toward collaborative mathematical 

argumentation were considered and mapped out.  

Data collection over one year included three semi-formal teacher interviews, 

classroom artefacts, field notes, twice weekly video captured observations of lessons, 

diary notes of informal discussions during and after lesson observations, written and 

recorded teacher reflective statements and teacher recorded reflective analysis of 

video excerpts. The on-going data collection and analysis maintained a focus on the 

developing mathematical discourse and argumentation. This supported the iterative 

cycles and revision of the communication and participation strategies. Data analysis 

occurred chronologically using a grounded approach in which codes, categories, 

patterns and themes were created. Through use of a constant comparative method 

which involved interplay between the data and theory, trustworthiness was verified 

and refuted. 

RESULTS AND DISCUSSION 

In the early stages of the study the participation and communication structure that 

Ava made available to students operated as a scaffold to begin to develop 

argumentation. As the study progressed the close relationship between a shift in the 

roles Ava and her students took and the changes enacted in the participation and 

communication structure is evident. 

Creating a context for collaborative argumentation 

Ava immediately worked with the students to establish a set of mutual expectations 

for behaviour as participants in a discourse community. She directly addressed the 

new ‘rules’ for talk, discussing with the students how they were required to work 
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together to build a mathematical community. She emphasised that working together 

involved an increase in collaborative participation in mathematical dialogue, both as 

listeners and as talkers. She repositioned herself from the central position of 

‘mathematical authority’ to that of ‘participant in the dialogue’. She modelled the 

shift explicitly placing emphasis on words which placed her as a participant also.  

Ava: Can you show us with your red pen what would happen? We want to know.  

In the first instance, Ava aimed to develop the students’ skills to work collectively to 

build mathematical explanations. She stressed that all group members needed to 

engage in construction of mathematical explanations and be able to explain them to a 

wider audience. She outlined not only how these explanations needed to make sense 

for a listening audience but also how listeners needed to make sense of the 

explanations offered by others. To develop their skill in the examination and analysis 

of explanations she provided opportunities for small groups to construct, explain, and 

in turn question and clarify explanations step-by-step through her directives:  

Ava: They might say I think it is 59. That’s cool but they have to back it up, explain 
how they came up with it. They have to say why. I want you before you even begin 
to go around in your group and actually talk about it. Someone in your group may 
ask you a question. For example, that’s an interesting solution, why do you think 
that? Could you show us how you got it? 

In this early stage, although mathematical argumentation was not a strong feature of 

how the students interacted Ava initiated discussion about the need for agreement and 

disagreement in the construction of reasoned explanations. For example, when a 

student stated that working as a group required agreement Ava responded:  

Ava: Yes you could be agreeing with what the person says…but are you always 
agreeing, do you think?  

In accord with the trajectory, she carefully structured ways in which the students 

could approach disagreement and challenge. When the students worked together she 

pressed them toward considering the use of arguing productively: 

Ava: Arguing is not a bad word…sometimes I know that you people think to argue 
is…I am talking about arguing in a good way. Please feel free to say if you do not 
agree with what someone else has said. You can say that as long as you say it in an 
okay sort of way. If you don’t agree then a suggestion could be that you might say I 
don’t actually agree with you. Could you show that to me? Could you perhaps write 
it in numbers? Could you draw something to show that idea to me? That’s fine 
because sometimes when you go over and you do that again you think…oh maybe 
that wasn’t quite right and that’s fine. That’s okay.    

Questioning, clarifying and beginning to challenge   

The careful attention Ava gave to socially scaffolding the discourse led to the growth 

in student confidence to question and clarify sections of explanations when required. 

For example after a group had modelled an explanation using equipment and 

described their actions of repeatedly adding three sticks as ‘squares times three’ they 

are challenged: 
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Jo: Isn’t that just plusing three sticks not timesing it? You are not timesing you’re 
adding. 

Pania: Well what she sort of means it is like it is going up. 

Alan: Is that timesing going up? 

Ava: When we talk about timesing what do we actually mean?  

Jo: We mean multiplying not adding. Adding is plus [indicates a + with fingers] that 
sign. 

Sandra: You mean when you add two more squares on, that is multiplying?  

Ava intercedes and uses the reasoning under discussion to extend their thinking. 

Through use of the interactional strategy of revoicing (O’Connor & Michaels, 1993) 

Ava deepens their understandings of multiplication and enriches their language.      

Ava: Rachel was saying she is adding three, adding another three, so that’s three plus 
three plus three. So if you keep adding three all the time what is another way of 
doing it? 

Alan: You can just times instead of adding. It won’t take as long and it is more 
efficient.   

Ava: Yes you are right. Did you all hear that? Alan said that you can just times it, 
multiply by three because that is the same as adding on three each time. What word 
do we use instead of timesing? 

Alan: Multiplication, multiplying.  

Pressing for multiple ways to justify and validate explanations 

A need for active sense-making and a press to provide conceptual explanations 

provided the students with the foundations with which to build collaborative 

argumentation. Ava pressed the students toward constructing multiple explanatory 

means to justify and validate their reasoning. Problems were also used which 

required that the students develop multiple ways to convince others. Before they 

began constructing their explanations in small groups, Ava placed direct emphasis on 

a need for them to ask specific questions. With the students she listed the questions 

they could use to elicit more information about mathematical explanations. Then she 

introduced a second set of questions which related to their need to be convinced 

through mathematical argumentation. She recorded an initial set of questions and 

then regularly recorded additional questions which arose during the classroom 

dialogue—questions which asked why and led to justification and validation of 

reasoning. She also assisted them by asking that they prepare responses in their small 

groups to the types of questions they might be asked in the large group situation:  

Ava: Think about the questions that you might be asked. Practise using some of those 
questions like why does that work or how can you know that is true. Try to see what 
happens when you say if I do that… then that will happen. 

In this climate of intellectual autonomy Ava and her students began to regularly ask 

the question, ‘can you convince us?’ This press toward need for convincing through 

mathematical argumentation was accepted and modelled by the students. They 

recognised that this supported possibilities for confirmation or reconstruction of their 
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reasoning. They would closely examine and rehearse each step in an explanation and 

if required for clarity or ease of sense-making rework, reformulate and re-present 

sections. Ava also instituted a further shift in how the students participated in 

communicating their mathematical reasoning introducing the concept of ‘no hands 

up’, particularly when there were many questions and challenges for an explanation. 

Her direct prompting for student interjection led to an interactive flow of 

conversation in which collaborative forms of argumentation were used to closely 

examine, analyse and validate the mathematical reasoning. When needed she 

intervened and facilitated slower exchanges, if she considered the mathematical 

concepts under consideration particularly challenging. For example, Ava participated 

in the following collective construction of an explanation, related to a problem which 

required naming a point which represented 5/100 on a numberline. She prompted for 

interjection but also intervened to maintain a focus on inquiry and challenge and 

ensure that the students reflectively considered and reconsidered their reasoning. 

Tipani [Draws a numberline, marks 0 then 9 and marks 1/10: Here is 0 and 1/10. 

Pania [Interjects]: Why are you doing those lines? 

Tipani [Records 5/100 in the middle]: Because each of those lines is representing one 
tenth, I mean ten tenths. I am thinking that this one is meant to be 5/100. 

Mahaki [Interjects]: Why? 

Tipani: Basically because of what you said Mahaki. 

Ava: Which was? Explain it in your own words and see if Mahaki agrees. 

Tipani: That if you times… ten by ten…well I am not actually that sure. I just think 
that it is five one hundredths. I don’t think that it is five one thousandths. 

Ava intervenes and attributes ownership back to the explainer but presses for further 

clarification. 

Ava: Well what do you think Mahaki, and you other people who heard what Mahaki 
explained? Let’s take a look at these fractions and think about what Tipani and 
Mahaki were saying. What do you see when you look at these fractions…what other 
ways can they be represented apart from that? 

Ava referred the argument back to the explainer. But within the context of 

collaborative argumentation another member appropriates and revoices what has 

been explained.  

Chanal [Looks at Mahaki who nods at him to speak, points at the 5/100 mark]: 
Mahaki said that one tenth can be ten percent because if you times one by ten you get 
ten and you times the ten by ten you get one hundred. So that will be one tenth is like 
ten percent. So in the middle that will be five percent there.  

Ava revoices to ensure that all participants are able to access what is being argued. 

She then probes further, progressing the reasoning toward collective construction of 

rich conceptual knowledge using multiple levels of representations. 

Ava [Points at 5/10]: You accept that Mahaki? So what you are saying is that that 
means five parts out of a hundred and the one tenth there means ten out of a hundred. 
So what is this one?  
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Chanal: That is fifty percent. 

Pania: So how?  

Recognising that further arguments are required Ava facilitates an alternative view.  

Ava: Yes you jump in here Chanal, if you can explain it in a different way. 

Chanal [Points at the numberline showing one tenth divided into ten segments and 
points at the first segment on the numberline]: I know what. If you go back to there 
and just pretend you shrink that down to there. There’s a hundred right? So that half 
way mark in brackets would be right there [Points at the position it would be in if 
you had a whole number line not just to one tenth and it represented 1/10] and that 
would be ten percent and if you halved that ten percent it would be five. 

Pania: Five what? 

Chanal [Records 5% and 5/100]: Five percent or five hundredth.  

Ava: Are you all convinced? Or do you want to ask some more questions? 

Mahaki: It is five hundredth because as Chanal said that thing there would be just 
like a little piece of this line…But the other way is to go the percent way. You get ten 
percent and then half that. That’s the quickest way to explain it. 

Ava and the students had maintained an extended flow of productive argumentation 

in which rich communal understandings of the equivalent relationship of rational 

numbers were constructed. Ava had positioned and repositioned the students to make 

visible their reasoning so that claims were collectively validated.  

CONCLUSIONS 

The teaching experiment was designed to successively press how the students 

participated in communicating their mathematical reasoning. The direct focus placed 

on collective construction and sense-making of explanatory reasoning acted as a 

scaffold to shift the discourse toward justification. Through these actions the social 

norms of sense-making were established in the community.  

The introduction of notions of ‘arguing’ and disagreement were important to lay the 

foundations for further shifts toward argumentation. The adoption by Ava and her 

students of a metaphorical view of the need for ‘convincing’ provided motivation for 

the students to engage in the communal activity. Direct teacher actions built on the 

notion of convincing and supported the constitution of an environment in which the 

students participated in collective argumentation. The use of specific questions to 

frame inquiry and challenge, and the increased student autonomy in when and how to 

participate were important factors.  

The findings of this study support Andriessen (2006) contention that young children 

can participate in collective argumentation when carefully scaffolded. Moreover, 

Wood and her colleagues (2006) identify differences in the cognitive demand and 

student participation in collective reasoning in classrooms where the use of discourse 

extends to justification and argumentation and this was evident in this study.  
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The present article reports on an attempt to identify the epistemological status of the 

mathematical knowledge interactively shaped in the classroom. To this purpose, three 

theoretical approaches are utilized in order to comparatively analyze a lesson 

provided by a well-experienced teacher on algebra, aiming at identifying the 

epistemological status of the knowledge under construction through the lenses offered 

by them.  The results show that this parallel and complementary exploitation is 

especially valid for deepening our understanding of the mathematical knowledge 

under construction in the classroom. 

INTRODUCTION 

School mathematics and experts’ mathematics are two epistemologically distinct 

bodies of knowledge as they differ in form, context and use from one another (e.g., 

Sfard, 1998).  However, the former draws from the latter, thus preserving certain 

connections with it, which are though rather blurred.  As a result, one could hardly 

justify why a meaning, an activity or an outcome emerging in the school context can be 

characterized as ‘mathematical’.  

The research dealing with this issue is very limited and mathematics education does 

not still appear to have detailed criteria of whether what is personally or socially 

constructed in the classroom is or is not mathematical. The study of teaching and 

learning phenomena and, in particular, the study of the interaction in the mathematics 

classroom remotely focuses on the nature of the mathematical knowledge shaped in it, 

which is greatly determined by this interaction (Steinbring, 1998). 

In searching for criteria to analyze didactical phenomena within the perspective of the 

nature of the knowledge constructed in the classroom, the requirement of the 

underpinning fundamental and operational characteristics of mathematics, namely of 

its epistemological features, seems absolutely essential (e.g., Rouchier & Steinbring, 

1989). To this direction, the focus of the present work is on the nature of the meaning 

emerging in the classroom characterized as ‘mathematics’ in connection with the 

classroom phenomena which determine this construction.   In particular, in an attempt 

to identify the nature of the mathematical knowledge interactively constructed in the 

classroom contexts, we utilize the analytical tools offered by three relevant theoretical 

approaches, i.e., of socio-mathematical norms (Yackel & Cobb, 1996), of the 

epistemological triangle (Steinbring, 2005) and of the management of the 

epistemological features (Kaldrimidou, et al, 2000). The comparative reading of the 
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same lessons through the lenses offered by these three approaches allows us to sharpen 

the analysis related to this nature. 

THE THEORETICAL APPROACHES  

Our purpose was to exploit the possibilities offered by each of the three approaches in 

order to identify the particular epistemological features of the subject matter 

knowledge they claim that is shaped in the classroom, as a consequence of the personal, 

social and epistemological constraints present. These approaches are briefly described 

below.   

a. Sociomathematical Norms: The notion of sociomathematical norms was 

conceived in order to analyze the mathematical aspects of teachers’ and students’ 

activity in the mathematics classroom (Cobb & Yackel, 1996).  These norms are 

collective criteria of values with respect to mathematical activities, which are 

interactively constituted (Voigt, 1995), not predetermined, but continually regenerated 

and modified by the interactions taking place between the teacher and the pupils. The 

sociomathematical norms are established in all types of classrooms and they are 

context dependent.   

The most common sociomathematical norms reported in the literature are related to 

explanations, justifications and solutions. With respect to explanations and 

justifications, the main sociomathematical norm detected is related to ‘what counts as 

an acceptable mathematical explanation’ (Yackel & Cobb, 1996). Concerning 

solutions, the relevant sociomathematical norms refer to ‘what is valued 

mathematically; what a more sophisticated solution is; what is mathematically 

efficient and/or different’ (Yackel & Cobb, 1996).  

b. The epistemological triangle: Steinbring (1998), adopting the view that 

knowledge is represented by a specific way of constructing relations (Rouchier & 

Steinbring, 1989), advocates that the epistemological status of what is interactively 

constructed by the students in the classroom can be identified through a relational 

structure called ‘the epistemological triangle’. In particular, he argues that in the 

course of classroom interaction, students have to actively construct relationships 

between signs/symbols and reference contexts.  This construction becomes ‘official’ 

in negotiations with the teacher and the other students.  As a result, the analysis of the 

classroom production of mathematical meaning from an epistemological point of view 

needs to take into account the relationship between two interrelated dimensions: (a) 

the construction of meaningful relations for sign systems is regulated by the reference 

contexts exploited and b) the meaning construction processes are embedded and at the 

same time interfere with the social conditions at work in the instruction process.   

In the course of the interaction between the sign system and the reference context, the 

role of which can be exchanged, the production of mathematical meaning can be seen 
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as a process of meaning transition from a rather familiar situation (the reference 

context) to a still unfamiliar sign system.   

c. Classroom management of the epistemological features of mathematics: 

Mathematics science functions with concepts, which are theoretical objects, with 

definitions as means of recognition and differentiation of objects, with theorems as 

means of presentation of attributes and relations and follows certain processes as 

means of management of objects, relationships and results. These aspects are not 

easily developed in students’ minds, but doing mathematics or acquiring a 

mathematical culture is unavoidably connected with functioning with the same 

"means" as mathematics does (Brousseau, 2006). 

Relying on the above, we claim that in order to identify the nature of the mathematical 

knowledge constructed in the classroom, we need to analyze classroom interaction on 

the basis of the management of these specific epistemological characteristics of 

mathematics by both teachers and students. Obviously, these elements are not always 

explicitly identified by the students. However, the teacher needs to control and handle 

them in ways that support students’ understanding with respect to the nature, the 

meaning and the role of these features in the mathematical activity. We argue that this 

aspect constitutes an important dimension of the teaching/learning process if students 

are to learn how to work mathematically.   

Hence, it is of great importance to look at how the teacher and the students deal with a 

concept, a definition or a theorem, how they function in solving, proving or validating 

procedures and, in general, if and in what degree these important characteristics of the 

scientific activity are valued in the classroom. To this purpose, there is a need to focus 

on each discursive contribution made by both teachers and pupils in the course of 

classroom interaction, examining the characteristics (a) assigned to it from a scientific 

mathematics point of view and (b) attributed to it in the context of the specific 

interaction. Collating these two aspects, we can identify congruencies or 

misrepresentations existing between the contribution made and the mathematical 

meaning or function underpinned, thus deepening our understanding about the nature 

of the knowledge shaped in the classroom. 

THE STUDY  

In order to study what emerges interactively in the everyday classroom as 

mathematical knowledge, we exploited the analytical tools suggested by the above 

three approaches. Our intention was to provide a comparative reading of the status of 

the mathematical knowledge under construction in the context of the interaction 

taking place in the classroom, through the lenses offered by these approaches.   

For the purposes of the present study, a videotaped and transcribed ‘regular’ lesson in 

algebra taught by a teacher with a university degree in Mathematics and more than 

fifteen years of teaching experience is exploited. The class consisted of 21 students of 

15 years old pupils (third year of a gymnasium located in the northern part of Greece). 
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The lesson is focused on solving quadratic equations, but the teacher begins by 

reminding to the students what an algebraic fraction is, a topic that they had discussed 

in the previous lesson (with linear expressions as denominators), with the intention of 

moving to algebraic fractions with quadratic expressions as denominators.    

Analyzing the data in the light of the above three perspectives, we followed an 

interpretive approach.  Specifically, we focused on the classroom interaction, trying to 

identify episodes which could be discussed simultaneously from the point of view of 

the three theoretical perspectives. We then considered the nature of the knowledge 

emerging, claimed to be ‘mathematical’, by resorting to the epistemological features of 

the knowledge shaped. 

DATA ANALYSIS AND DISCUSSION 

The analysis that follows concentrates first on the notion of the sociomathematical 

norms, then on that of the epistemological triangle and, finally, on the management of 

the epistemological features of mathematics. 

Sociomathematical norms: Looking at the way the teacher poses questions, provides 

explanations or justifications and promotes ‘better’ solutions, it can be argued at first 

that the sociomathematical norms established in the classroom are mainly guided by 

her. While she proposes to the students to take initiatives and formulate their own 

ideas, she immediately corrects or rejects their contributions or provides the correct 

answer (e.g., lines 82-84 & 98). 

Her main concern ‘to avoid errors’ (“don’t lose any root”, lines 94 & 98) leads her to 

emphasizing procedural and morphological elements in her explanations (e.g. lines 86 

and 94) and to suggesting approaches, even contradictory, to ensure ‘correct’ solutions 

(e.g., lines 71-72 and lines 81- 82). 

Thus, the fundamental norms about what is mathematical dominating in the classroom 

are either of descriptive character or concern procedures; explanations on objects are 

avoided.  For example, in lines 71-72, the student proposes a procedure, but the 

teacher rejects it as ‘unsafe’.  No exploration of the context within which the procedure 

could be utilized is carried out.  

Epistemological triangle: Analyzing the lesson from the perspective of the 

epistemological triangle, that is, in terms of the relationship between reference context 

and sing system, a change of the former is noticed through the lesson: from rational 

algebraic fractions (introductory part of the lesson) to rational numbers (lines 61- 62), 

then to operations with whole numbers (line 63) and finally to solving quadratic 

equations that can be factorized (the rest of the lesson).  

Similarly, the sign system exploited changes in the course of the lesson development, 

without this becoming clear.  Thus, in some parts of the teaching the focus is on the left 

hand side of the equation (algebraic expressions), while in others on substituting 

values for x to find out whether the equation is true.  It is apparent that the above 
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changes make the relation between reference contexts and sign systems rather 

problematic.  

Furthermore, it should be noted that each time the teacher herself (line 84) or a student 

(lines 91, 95) make a contribution, which allows for the discussion to focus on 

relations of general or theoretical objects, the teacher avoids taking the opportunity of 

doing so by either rejecting the chance or by providing explanations and justifications 

of mainly procedural or morphological type (e.g., lines 83-86, 94, 96, 98).   

Management of epistemological features: Within this perspective, a dominance of 

procedural and practical directions as well the lack of complete justifications based on 

the nature and the attributes of mathematical objects can be identified.  This results in 

different mathematical objects appearing in a homogeneous manner. For example, in 

lines 61- 65, three different mathematical objects (fractions, division, algebraic 

fractions) are implicitly connected to equations (looking for denominators ≠0). These 

objects are mainly presented in a morphological manner and without any connection to 

definitions or properties, which could support students’ identification of the new 

object under consideration (equation).  This interplay between different mathematical 

objects, not clearly defined and vaguely interconnected cannot but lead to the 

distortion of the mathematical meaning of quadratic equations. Similarly, in lines 

84–86, the incomplete reasoning utilized limits students’ thinking concerning the 

solution of quadratic equations and two different mathematical concepts are treated as 

one (in Pythagoras Theorem, the equations represented relations between lengths of 

line segments and not only line segments; thus, only the positive solutions had 

meaning). Moreover, the use of ‘rules’ (“here it needs ±√4”, line 86) instead of an 

argumentation based on properties results in the outcomes to appear as the result of 

statements.  So, rules, properties and statements are treated in a homogeneous way, 

without any differentiation as for their nature or role. 

Finally, the emphasis on descriptive elements in various parts of the lesson results in 

the downgrading of the meaning of concepts (e.g., lines 92-94, “algebraic are the 

numbers which have + and –”). This, together with the dominating undifferentiated 

use of rules, properties and procedures prevents the attributes of the mathematical 

objects to function as frameworks for dealing with mathematical objects, as well as 

with mathematical relations.  This is apparent in lines 97-98, where the student’s 

suggestion is rejected and not discussed on the basis of an argument which is based on 

the results of the strategy (“you lose a root”) and not with reference to the restrictions 

and the ways in which an algebraic expression can be simplified. 

DISCUSSION AND CONCLUSION 

It is widely accepted today that students’ learning of mathematics is greatly shaped by 

the meanings constructed through negotiations in the classroom.  Thus, a systematic 

analysis of the interaction taking place within the mathematics classroom in relation to 

the mathematical meaning under construction is of particular interest. The three 
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analyses presented above offer a different way of looking at this issue, highlighting 

different aspects of it.   

The first approach focuses on the processes adopted in the classroom, which shape 

what is appointed as ‘mathematical’ within it.  On the basis of this approach, we can 

argue that, in the classroom under consideration, the rules are placed by the teacher, 

who accepts or rejects students’ contributions. The relevant criteria, often 

contradictory, remain ambiguous (e.g., the teacher first rejects and then accepts the 

student’s proposal “to separate known from unknown terms” with no justification, 

lines 71-82). As far as what ‘counts as mathematical’ in this classroom is concerned, it 

seems to be overtly determined by the teacher and we can only implicitly talk about its 

nature and whether it is or not mathematical.   

Steinbring’s approach allows us for an epistemological analysis of the mathematical 

knowledge interactively constructed in the classroom with reference to the nature and 

the character of the different objects involved in this interplay (whether or not this 

knowledge is relational and context-free). Using this approach to read the transcript of 

the lesson at hand, we can claim that the teacher pursues to arrive at a general idea (the 

solution of quadratic equations) via specific reference contexts.  However, the way 

these contexts are handled as well as the different resolutions suggested 

(factorizing/separating terms) do not allow for a relational view of this idea to be 

developed.   

Finally, the third perspective explicitly focuses on the status that the knowledge 

shaped in the classroom acquires through the particular way it is managed, offering a 

lens to deciding whether what is developed in the classroom bears mathematical 

characteristics or involves students in genuine mathematical activity.  On the basis of 

this analysis, we identified in the classroom under consideration the same 

homogeneous way in which mathematical objects, relations or procedures are treated 

in many other classrooms, as shown in earlier studies (Kaldrimidou, et al, 2000). This 

undifferentiated presentation of the various distinct objects, which are engaged in the 

interaction, as well as of their characteristics does not elevate properties and relations 

in a manner that would facilitate the management of new objects or relationships. Thus, 

in this particular case, the teacher places emphasis on morphological aspects or on 

earlier procedures, which are often used in different and even undefined ways in the 

new situation. This manner of dealing with mathematical objects and their properties 

distorts their nature and role, possibly leading students to difficulties in approaching 

the substance of the mathematical activity. 

The points raised above suggest that the parallel exploitation of the three approaches is 

especially valid.  The first highlights the way in which the mathematical features are 

shaped in the classroom, the second focuses on whether the knowledge emerging is 

general or context-specific, while the third allows for the identification of the nature, 

the status and the function of the various ingredients of the mathematics shaped in the 
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classroom. Moreover, the preceding analysis highlights the need to look closer at the 

particular epistemological features of the mathematical knowledge under construction 

in the classroom. The complexity of the didactical phenomena framing this 

construction imposes the need for a multiple approach to analyzing it, which will 

carefully incorporate the issues raised by all three perspectives.   

 

APPENDIX 
 

61. T. Watch it, children. In order for the fraction to have meaning, what should the 

denominator always be?  

62. Vasos. Different from zero. 

63. T. That’s it! Because the division by zero is what? 

64. Students. Impossible! 

65. T. That is, before you simplify, you should place the denominator ≠ from 0... 

71. George. To separate known terms from unknown terms. 

72. T. You suggest we should separate. It cannot be done because both terms are 

unknown.  Anyone else? …………… 

81. Argyro. The 4 will not be moved to the other side and … 

82. T. That’s right.  Then, what do we have from here?  x
2
=4. Let me hear now.  What 

am I to write?  x…, I am listening to the rest of you.  What am I to write? 

83. Argyro. x equals square root of 4. 

84. T. Bravo! Be careful children! This is what we were saying up to last year. 

Because, when we learnt how to solve this type of equations, x was a line segment. 

We saw this in Pythagoras Theorem, do you remember? And line segments are 

always…? 

85. Students. Positive 

86. T. Positive! What did we put then? Simply square root of 4.  Here needs ±√4.  

Then, what can be concluded from here? x=±2. Because x takes both values, -2 

and +2. If you substitute x=+2 in the initial equation, is the equation true? 

87. Students. Yes 

88. T. It is confirmed.  Thus, x=+2 is a solution.  However, if we substitute x=-2, is 

the equation also true? 

89. Students. Yes. 

90. T. It is again true. That is, we should not lose solutions. We should write ±√4.   

91. Kostas. When we say x
2
=4, isn’t it x

2
=2

2
? Thus, since the two squares are equal, 

should their bases be also equal? 

92. T. Well, look.  You will learn in Lyceum that if a
v
 is equal to b

v
, then we can say 

that a=b only if a and b are positive numbers. Our problem is different.  We need 

to solve an equation.  And what do we notice in this equation? Both +2 and -2 

give us 4.  Thus, the equation is true for both these values.  So, we should not lose 

-2. From now onwards, we should always write it this way. Last year, in geometry, 
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we wrote √4. And what does ‘algebra’ mean?  What numbers does algebra deal 

with? Algebraic numbers. And which numbers are algebraic? 

93. Theodora. The number which have plus and minus. 

94. T. That’s it! The ones which have plus and minus.  We found this example last 

year, when working on Pythagoras Theorem, on line segments.  There, it was not 

necessary to put both signs. It is here.  Because we ended up to a square root. 

When we factorize the left hand side, it becomes clear which solution is which.  

Whereas, when we use this way, it is not clear.  So, be careful!  Don’t be carried 

away and lose a solution.  That is, the negative root.  Kostas? 

95. Kostas. In x
2
-2, if we write x.x = 2x? The x is cancelled and then x=2 

96. T. Be careful! Which x’s is going? Priority of operations... We first multiply… 

97. Kostas. Madam, we will do x
2
=2x … x.x = 2x… 

98. T. But you have a root! It is forbidden! Ok? You lose a root. Don’t do this kind of 

cancellations, because you lose roots.  All right? However, when we take out the 

common factor, we don’t lose the root.  
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AND LEARNING MATHEMATICS 
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In this paper we focus on students’ beliefs and attitudes which concern studying and 

learning mathematics. The sample of this study was 1645 students of 10
th
, 11

th
 and 

12
th
 grade. From our data two factors of beliefs and three factors of attitudes were 

traced. We investigate whether these factors correlate, whether there are any 

differences of students’ beliefs and attitudes according to their social status and 

gender and whether they influence students’ performance and ability to understand 

mathematical proofs.  

INTRODUCTION 

There are many studies concerning students’ beliefs and attitudes about mathematics. 

In Shoenfeld (1989), Mc Leod (1992) and Broun et al. (1988), it is verified that there 

is a link between students’ attitudes and their performance in mathematics. According 

to Cobb (1986) there is a relation between beliefs and learning of mathematics. In 

Schoenfeld (1989) it is demonstrated that students’ beliefs about Euclidean Geometry 

is a consequence of the teaching of mathematics. Some researchers agree that 

students’ attitudes can be changed into more positive ones. Regna and Dalla (1992) 

assert that when teachers are enthusiastic in their teaching and plan activities which 

are accessible to students, then students’ attitudes can be improved. In Kifer & 

Robitaille (1989) and in Philipou & Christou (2000) it is verified that students’ 

beliefs are influenced by their social surrounding. According to Dematte et al. (1999) 

it seems that students’ beliefs about mathematics are influenced by the educational 

system of their country. In Pehkonen (1995) students’ beliefs from eight countries are 

investigated. In Christou C. & Philipou G. (1999) factorial structure of 13 years old 

students’ beliefs among four countries (Cyprus, Finland, U.S.A., and Russia) are 

investigated. In this paper we investigate 10
th
, 11

th
, 12

th
 grade students’ beliefs and 

attitudes about studying and learning mathematics and we examine their correlation. 

We also investigate whether they influence students’ performance and ability to 

understand mathematical proofs. 

THEORETICAL BACKGROUND 

As it comes from the literature, there are various opinions concerning the notion of 

“beliefs”. According to Goldin (1999), a belief may be “the multiply encoded 

cognitive configuration to which the holder attributes a high value, including 

associated warrants”. Cooney (1999), asserts that a belief is “a cluster of dispositions 

to do various things under various circumstances”, which leads to the acceptance that 

“different circumstances may evoke different clusters of beliefs” (Presmeg 1988). It 

is widely accepted that beliefs are the individual’s personal cognitions, theories and 
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conceptions that one forms for subjective reasons. Their nature is partly logical and 

partly emotional. According to Mc Leod (1992) “beliefs are largely cognitive in 

nature and are developed over a long period of time”. We will use the term “beliefs” 

in the meaning of personal judgments and views, which constitute one’s subjective 

knowledge, which does not need formal justification.  

As it happens with the notion “beliefs”, there is also luck of consensus about the 

notion of “attitudes”. Many researchers use attitudes as a term which includes beliefs 

about mathematics and about self. Mc Leod (1992) accepts that attitudes “refer to 

affective responses that involve positive or negative feelings of moderate intensity 

and reasonable stability”; they may appear as a result of the automation “of a 

repeated emotional reaction to mathematics” or of “the assignment of an already 

existing attitude to a new but related task”. According to Hannula (2002) “attitude is 

not seen as a unitary psychological construct but as a category of behavior that is 

produced by different evaluative processes. Students may express liking or disliking 

of mathematics because of emotions, expectations or values”. Hannula declared that 

attitudes can change under appropriate circumstances. In this study we investigate 

10
th
, 11

th
, 12

th
 grade students’ beliefs and attitudes, which mainly concern studying 

and learning mathematics and we explore their factorial structure; we investigate 

whether there are any differences in student’s beliefs and attitudes, concerning their 

social status and gender; we examine whether these factors correlate and influence 

students’ performance at school and their ability to understand mathematical proofs.  

 

THE STUDY 

  

Methodology 

Data reported in this paper was collected by a questionnaire administered to 1645 

students of 10
th
, 11

th
 and 12

th
 grade. These students were from 25 high schools in the 

district of Athens in Greece, which were selected by the stratified - two stages cluster 

sampling method. This study is a part of a broader one, the aim of which is to 

investigate students’ beliefs and attitudes concerning mathematics, how they are 

evoked and affect students’ understanding, performance and ability in mathematics. 

We constructed the questionnaire taking into account analogous questionnaires from 

the literature, as in Schoenfeld, (1989). The questionnaire consists of 28 questions 

(statements), 10 of which concern beliefs and 14 concern attitudes about mathematics. 

The 25
th
 question concerns students’ performance in mathematics at school in the 

previous year.  There are three more tasks, the 26
th
, 27

th
 and 28

th
, called mathtest in 

this paper, which measure students’ ability to understand mathematical proofs. These 

last three tasks were differentiated according to the students’ grade. Below we present 

one task of this type for each grade, because of lack of space. Students were asked to 

choose one of the numbers 1, 2, 3,…, 9 that best describes what they feel or think 

about each one of the first 24 statements, using number 1 to declare “I don’t agree at 

all” and number 9 to declare “I absolutely agree”. We used a scale range from 1 to 9, 
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because we believed that with this scaling, students would express their views 

precisely. 

Twenty one of the questions-statements of our questionnaire are presented in table 1. 

These are the ones which constitute the five factors (see table 1 below).Three of the 

statements of the questionnaire are omitted, because of their low loadings in the 

factors, while statements 25, 26, 27 and 28 are presented below: 

Q25. Your overall grade average in mathematics last year was : ………….  

Q26. For α, b>0, if α > b, then α+4>b+4 (1). So, 
( 4)

4(2)
a a

b
b

+
> + . Thus 

4

4

b a

a b

+
<

+
 (3). 

Explain why relations (1), (2) and (3) hold. (This task was for 10
th
 grade students). 

Q27. Let ,a b , c be real numbers such that 5a b− ≤  and 5b c− ≤ . Then the following 

hold: 5 5b a b− ≤ ≤ +  (1), 5 5b c b− − ≤ − ≤ − +  (2). So, we obtain 10 10a c− ≤ − ≤  (3). 

Therefore 10a c− ≤ (4). Explain why relations (1), (2), (3) and (4) hold. (This task 

was for 11
th
 grade students). 

Q28. Let f  be a real function, defined by 3( ) 1,f x x x R= + ∈ . We observe that 

( 1) 0.f − =  We suppose that there is p R∈ , with 1p ≠ − , such that ( ) 0f p = .Then, if 

1p < −  it holds that ( ) ( 1)f p f< −  (1) and if 1p > − , it holds that ( ) ( 1)f p f> −  (2). In any 

case there is a contradiction. Explain why the relations (1) and (2) hold and what the 

contradiction is. (This task was for 12
th
 grade students). 

 

Data analysis 

Exploratory factor analysis which was applied, led us to five factors, with sufficient 

internal consistency and reliability. Factors F1 and F2 concern beliefs and factors F3, 

F4 and F5 concern attitudes. In order to investigate whether there are differences in 

students’ beliefs and attitudes concerning their social status and gender, we applied 

multivariate analysis of variance (manova).We also calculated Pearson correlations 

for these factors and variables 25 and the mathtest, in order to investigate which of 

them correlate and whether they correlate positively or negatively. 

 

RESULTS 

 
Table 1 shows the five factors, the related items, means, standard deviations, factor 

loadings and Cronbachs’ alpha. 

 
Factors 

  

Cronbach’s 

a 

Mean St.D Load-

ings 

  F1  “Utility of proofs and mathematics’” 0.604 6.584 1.58  

  Q24 “You study the proof of a theorem, 

because you believe that the understanding of 

proofs can give you ideas, which will help 

you in problem solving” 

   0.665 
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  Q3 “Mathematics which I learn at school 

contributes to improving my thinking” 

   0.634 

  Q23 “You study the proof of a theorem, 

because you believe that the understanding of 

the proof will help you to understand the 

theorem” 

   0.631 

  Q4 “Mathematics which I learn at school is 

useful only for those who will study 

mathematics, sciences and engineering in the 

university”(reversed)  

   -0.573 

  F2  “Mathematical understanding through 

procedures” 

0.639 5.812 1.35  

  Q20 “If you are able to write down the proof 

of a theorem, then you have understood it” 

   0.751 

  Q21 “If you are able to express a definition, 

then you have understood it” 

   0.717 

 Q19 “Studying mathematics means you learn 

to apply formulas and procedures” 

   0.575 

  F3 “Love of mathematics” 0.735 5.642 2.23  

 Q6 “You loved mathematics in junior high 

school” 

   0.869 

  Q5 “You loved mathematics in elementary 

school” 

   0.812 

  Q7 “You love mathematics nowadays in 

senior high school” 

   0.665 

  F4  “First  level of studying mathematics-

studying mathematics with understanding” 

0.783 7.110 1.52  

  Q10 “Whenever you study mathematics you 

try to understand the proofs of theorems” 
   0.726 

  Q9 “Whenever you study mathematics you 

try to understand what the theorems say”  

   0.690 

  Q8 “Whenever you study mathematics you 

try to understand definitions” 

   0.650 

  Q12 “Whenever you study the proof of a 

theorem you try to understand the successive 

steps of the proof” 

   0.648 

  Q11 “Whenever you study mathematics you 

try to   prove the theorems by yourself”             

   0.599 
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  Q13 “Whenever you study the proof of a 

theorem you try to understand the reason for 

which we follow this procedure  towards the 

proof” 

   0.510 

  F5 “Second level of studying mathematics- 

studying mathematics with reflection” 

0.703 5.09 1.59  

  Q15 “When you have done an exercise you 

examine whether it could be done in a 

different way” 

   0.794 

  Q18 “When you have done an exercise you 

examine whether you could extend it by 

adding some new questions” 

   0.736 

  Q16 “When you have done an exercise you 

think again about the steps you have taken, 

reflecting on them” 

   0.645 

  Q14 “When you have studied a  proof of a 

theorem you think again about the whole 

proof, reflecting on it” 

   0.514 

  Q17 “When you have done an exercise you 

examine whether the result you have found  is 

logical” 

   0.468 

Table 1: The five factors 

 

Table 2 shows the results of manova analysis with factors F1 – F5 as dependent 

variables and “gender” and “social status” as independent variables. As it is shown in 

this table there is a significant statistical difference between female and male students 

concerning factors F2 (p=.03<.05) and F4 (p=.00<.05). More specifically, it emerges 

(by comparing the respective means) that female students have a stronger belief that 

mathematical understanding is achieved through procedures than male students do. It 

also emerges that females study mathematics more carefully than males do. This 

finding correlates with another finding of our broader study according to which girls 

have higher performance at school in mathematics than boys do. 

 

Factors               Gender Social 

status 

Means  F 

4.612 

P 

.00 female male 

F 

1.433 

P 

0.08 

F1 3.328 .07 6.68 6.48   

F2 8.707 .03 5.95 5.67   
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F3 1.130 .28 5.51 5.76   

F4 20.323 .00 7.37 6.85   

F5 2.159 .142 5.11 5.08   

Table 2: Results of manova analysis 
 

However, according to this study, there is no significant statistical difference between 

boys and girls concerning mathtest. Manova analysis showed also, that there is no 

significant statistical difference for all the factors concerning the social status of the 

students. 

We also traced correlations among the factors as well as variables 25 and mathtest 

(See table 3). 

 

 F1 F2 F3 F4 F5 25 Mathtest 

F1 1       

F2 .155
** 

1      

F3 .343
** 

.039
 

1     

F4 .378
** 

.242
** 

.259
**

 1    

F5 .320
** 

.180
** 

. 305
** 

.418
** 

1   

25 .155
** 

-.080**
 

.343
** 

.202
** 

.087
** 

1  

Mathtest .203
** 

-.080
** 

.370
** 

.232
** 

.143
** 

.395
** 

1 

Table 3:  Correlations between the factors and variables 25, mathtest 

As it is shown from the above table factor F1 correlates positively with factors F2, F3, 

F4 and F5, as well as variables 25 and mathtest. That is, students who believe in the 

utility of proofs and mathematics, first study mathematics in a way that will enable 

them to understand (first level of studying) and then they continue on whatever they 

have studied by reflecting (second level of study). These students love mathematics, 

have high performance and ability to understand proofs. 

Factor F2 correlates positively with factors F4, F5 and negatively with variables 25 and 

the mathtest. Factor F3 correlates positively with factors F4, F5 and variables 25 and 

the mathtest. Factor F4 correlates positively with factor F5 and variables 25 and the 

mathtest. Factor F5 correlates positively with variables 25 and the mathtest. It seems 

that procedural studying and learning of mathematics is not conducive to high 

performance or to the ability to understand proofs. Love of mathematics correlates 

positively with studying of mathematics involving understanding and reflection, with 

high performance at school and with the ability to understand mathematical proofs. 

Finally it seems that high performance in mathematics correlates with high ability to 

understand proofs. 

CONCLUSIONS 

The results of this study clarify the structure of upper high school students’ beliefs 

and attitudes about studying and learning mathematics and the way in which 
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mathematical performance and ability are influenced by them. Two different factors 

concerning beliefs and three factors concerning attitudes were traced. It has been 

made clear that, students’ beliefs and attitudes are independent from their social 

status. This finding would probably be different if we compared students from 

agricultural districts of Greece with students from an urban area as Athens. It is 

clarified that girls believe more than boys that mathematical understanding is 

achieved through procedures. They are also more careful and hardworking in 

studying and learning mathematics than boys are. Strong belief in the utility of proofs 

and mathematics as well as love of mathematics correlate positively with studying 

mathematics in such a way, that ensures good and deep understanding (studying with 

understanding and reflection). They correlate positively with high performance and 

mathematical ability as well. Studying mathematics with understanding (first level of 

studying) and with reflection (second level of studying), correlate positively with 

high performance and ability to understand proofs as well. On the other hand 

procedural view and procedural studying of mathematics correlate negatively with 

performance in mathematics and the ability to understand proofs. That is, 

performance in mathematics and ability to understand proofs depend on the way in 

which students study mathematics. It is remarkable that, love of mathematics, is the 

factor which correlates most positively with performance and mathematical ability. 
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“HOW CAN WE DESCRIBE THE RELATION BETWEEN THE 

FACTORED FORM AND THE EXPANDED FORM OF THESE 

TRINOMIALS? – WE DON’T EVEN KNOW IF OUR PAPER-AND-

PENCIL FACTORIZATIONS ARE RIGHT”:  

THE CASE FOR COMPUTER ALGEBRA SYSTEMS (CAS) WITH 

WEAKER ALGEBRA STUDENTS 

Carolyn Kieran and Caroline Damboise 
Université du Québec à Montréal / Collège St-Maurice, St-Hyacinthe 

A small comparative study was carried out with two classes of 10
th
 grade students in 

need of remedial help in algebra – one class being provided with CAS technology 

and the other class not. Two sets of parallel tasks were designed with the main 

difference between the two being the use of the CAS tool. Both classes were taught by 

the same teacher over the course of one month. Results indicate that the CAS class 

improved much more than the non-CAS class with respect to both technique and 

theory. The CAS technology played three roles that were instrumental in increasing 

students’ motivation and confidence: generator of exact answers, verifier of students’ 

written work, and instigator of classroom discussion. These findings suggest that the 

algebra learning of weaker students can benefit greatly from the integration of CAS 

technology. 

PAST RESEARCH IN THIS AREA 

While research evidence is beginning to accumulate regarding the positive roles that 
Computer Algebra Systems (CAS) can play in the learning of school algebra by 
academically oriented pupils (e.g., Kieran & Drijvers, 2006; Thomas, Monaghan, & 
Pierce, 2004; Zbiek, 2003), considerably fewer CAS studies have been specifically 
identified as being carried out with weaker students. Thus, little is known of the 
benefits of CAS technology for weak algebra students. Even though Heid and 
Edwards (2001) have proposed that “computer symbolic algebra utilities may 
encourage weak students to examine algebraic expressions from a more conceptual 
point of view” (p. 131), they did not refer to specific studies that could support this 
claim. However, Lagrange (2003) has emphasized from the research his group 
carried out with precalculus students that easier symbolic manipulation did not 
automatically enhance student reflection and understanding. In contrast, Jakucyn and 
Kerr (2002) have pointed out that precalculus students who lacked certain procedural 
skills could apply their conceptual understanding of the same procedures toward the 
solving of related problem situations, when provided with CAS technology. Similarly, 
in a study involving low-ability grade 12 students, who were using CAS in a unit on 
differentiation, McCrae, Asp, and Kendal (1999) noted that CAS technology led to 
improved strategy choice for solving calculus problems. In addition, Shaw, Jean, and 
Peck (1997) found that college students who were enrolled in a developmental, CAS-
based, intermediate algebra course not only seemed to develop some of the skills that 
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they had not mastered from previous mathematics courses, but also performed better 
in a follow-up mathematics course than those students who took the traditional 
intermediate algebra course. 

Heid (2002), in a review of arguments against CAS use in the secondary algebra 
classroom, including the idea that they lead to a loss of by-hand skills, argued for the 
opposite view, that is, that CAS enhances students’ understanding of the symbolic 
aspects of algebra rather than supplanting such skills. However, as Driver (2001) 
pointed out, students who are weak in algebra continue to be barred from access to 
CAS due to concerns that such students may be “unable to benefit from the use of an 
algebraic calculator or become over-reliant on it and not develop the necessary 
knowledge and procedures required by the course” (p. 229). Thus, while the evidence 
is extremely scanty with respect to weaker algebra students, the main issue appears to 
be whether the use of CAS permits these students to develop a stronger symbol sense 
than would otherwise be the case in a paper-and-pencil environment – a symbol sense 
that can in fact lead to improved by-hand skills. To adequately address this issue, a 
comparative study involving two comparable classes of weak algebra students was 
designed, one class having access to CAS technology and the other class not. The 
construction of the tasks and instructional sequences to be used in the study was 
underpinned by a theoretical framework based on the instrumental approach to tool 
use: the Task-Technique-Theory framework.  

THEORETICAL FRAMEWORK OF THE STUDY 

The instrumental approach to tool use encompasses elements from both cognitive 
ergonomics (Vérillon & Rabardel, 1995) and the anthropological theory of didactics 
(Chevallard, 1999). The instrumental approach has been recognized by French 
mathematics education researchers (e.g., Artigue, 2002; Lagrange, 2002; Guin & 
Trouche, 2002) as a potentially powerful framework in the context of using CAS in 
mathematics education. As Monaghan (2005) has pointed out, however, one can 
distinguish two directions within the instrumental approach. In line with the cognitive 
ergonomic framework, some researchers (e.g., Trouche, 2000) see the development 
of schemes as the heart of instrumental genesis. More in line with the anthropological 
approach, other researchers (e.g., Artigue, 2002; Lagrange, 2002) focus on techniques 
that students develop while using technological tools and in social interaction. The 
advantage of this focus is that instrumented techniques are visible and can be 
observed more easily than mental schemes. Still, it is acknowledged that techniques 
encompass theoretical notions. In this regard, Lagrange (2003, p. 271) has argued 
that: “Technique plays an epistemic role by contributing to an understanding of the 
objects that it handles, particularly during its elaboration. It also serves as an object 
for a conceptual reflection when compared with other techniques and when discussed 
with regard to consistency.” It is this epistemic role played by techniques that is 
essential to understanding our perspective on CAS use, that is, the notion that 
students’ mathematical theorizing develops as their techniques evolve within 
technological environments. However, the nature of the tasks presented to students – 
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tasks that include a focus on the theoretical while the technical aspects are developing 
– is crucial. Thus, the triad Task-Technique-Theory served as our framework not only 
for gathering data during the teaching sequences and for analyzing the resulting data, 
but also for constructing the tasks and tests of this study. 

METHODOLOGICAL ASPECTS OF THE STUDY 

Research Questions 

The central research questions of this study were the following: Do students who are 
weak in algebraic technique and theory benefit more from CAS-based instruction in 
algebra than from comparable non-CAS-based instruction? If so, what are the 
specific benefits, and what roles does the CAS play that can account for these 
benefits? 

Participants 

The participants were two classes of weak Grade 10 algebra students (15 to 16 years 
of age) who were required by the school to take one month of supplementary algebra 
classes in May 2005 (50 minutes per day, every 2nd day). The teacher of these two 
classes (the second author of this report) was enrolled in a master’s program at the 
first author’s university and so arranged that her master’s research project would 
involve the students of these two classes. One class had access to CAS technology 
(TI-92 Plus calculators) during the month-long teaching sequence on algebra and the 
other class did not.  

Task and Test Design 

A set of parallel activities was developed for the two classes – focusing mainly on 
factoring and expanding, an area where these students were particularly weak. Every 
effort was made to have identical tasks for the two classes, except that where one 
class would use paper-and-pencil only, the other class would use CAS or a 
combination of CAS and paper-and-pencil. Some of the task questions were 
technique-oriented, while others were theory-oriented. Tasks that asked students to 
interpret their work, whether it was CAS-based or paper-and-pencil-based, aimed to 
focus students on structural aspects of algebraic expressions and to bring 
mathematical notions to the surface, making them objects of explicit reflection and 
discourse in the classroom. An example of one of these task activities is presented in 
the following section on the analysis of student work. Each pupil was provided with 
activity sheets containing the task questions, where he/she either gave answers to the 
technical questions or offered interpretations, explanations, and reflections for the 
theoretically-oriented questions. 

In addition to generating two parallel sets of task activities, we also constructed one 
pretest and one posttest. The questions of these two tests focused primarily on 
factoring and expanding algebraic expressions, on describing the reasoning involved 
in carrying out these procedures, on describing the structural features of factored and 
expanded forms, and on explaining the relation between them. Test questions were 
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divided for purposes of analysis into two types: technical and theoretical; students’ 
tests were scored according to these two dimensions.  

Unfolding of the Study 

Both classes were administered the paper-and-pencil pretest at the start of the study. 
There was no significant statistical difference between the pretest scores of the two 
classes on either the technical or theoretical dimensions. However, the class that had 
the marginally weaker technical score was the class that was designated the CAS 
class. Because the students of the CAS class had not had any prior experience with 
symbol-manipulation technology, a few periods were then spent in initiating them to 
this technology, in particular to the commands that would be used during the teaching 
sequence. Each student was provided with a CAS calculator for the duration of the 
study. The same teacher taught both classes. She had not had any prior experience 
with using CAS technology in her algebra teaching. She taught both classes in a 
similar manner: introducing the topic of the day at the blackboard; describing briefly 
the content of the given worksheet; circulating and answering questions while 
students engaged with the tasks of the worksheets; and bringing all the students 
together during the last 15 minutes of class in order to discuss the material that they 
had been working on during that period. Students in the CAS class were sometimes 
encouraged to use the view-screen to present their work during the discussion period. 
At the close of the month-long instructional sequence, both classes wrote the paper-
and-pencil posttest, which was an alternate version of the pretest. Neither class had 
access to CAS technology for the writing of the posttest.  

Data Sources 

The data sources, which permitted a combination of qualitative and quantitative 
analyses, included: (a) all the task worksheets of each student from the two classes; 
(b) the pretest and posttest of each student; (c) the daily summaries in the teacher’s 
logbook, which she entered at the close of each class; here she kept track of the 
discussions that had occurred, and also recorded individual students’ comments, 
concerns, difficulties, high and low points of the classroom activities, and any other 
items worthy of note.   

ANALYSIS OF STUDENT ACTIVITY AND WRITTEN WORK 

Analysis of Pretest and Posttest 

An analysis of the pretest and posttest scores of the two classes of students was first 
carried out (see Table 1).  

 
Pretest 

Technique 
Posttest 

Technique 
Pretest 
Theory 

Posttest 
Theory 

CAS class 74.9% 91.2% 19% 39% 
non-CAS class 75.9% 85.6% 15.2% 23.8% 

Table 1: Mean percentage scores for the technical and theoretical components of the pretest and 
posttest by the CAS and non-CAS classes. 
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The wide discrepancy in the pretest scores between the technical and theoretical 
components is attributable to the fact that neither class had had experience with 
theoretically-oriented questions in their algebra classes prior to the unfolding of this 
study. (Furthermore, while the pretest-technique scores may appear to be quite strong, 
they were considered weak in a school where mastery learning was the goal.) In any 
case, it is clear that the posttest improvement in the CAS class on the Theory 
dimension was considerably greater than was the case for the non-CAS class. With 
respect to the Technique dimension, again both classes improved as a result of the 
teaching sequence that occurred between pretest and posttest, but the CAS class 
improved more. While this was a small study involving only two classes of students, 
the results of this first analysis indicate that the CAS class benefited more from the 
remedial instructional sequence than did the non-CAS class (see Damboise, 2006, for 
a detailed analysis of student responses to the two tests). To try to find explanations 
that could account for the greater improvement in the CAS class, we then analyzed 
the teacher’s logbook entries and students’ worksheets.    

Analysis of Teacher’s Logbook Entries and Students’ Worksheets 

The analysis of the entries in the teacher’s logbook led to several conjectures 
regarding the mechanisms at play in the CAS class – mechanisms that could account 
for the superior performance of the CAS class on the posttest. These conjectures were 
supported by the analysis of students’ technical and theoretical responses to the 
worksheet questions. In brief, the technology was found to play several roles in the 
CAS class: it provoked discussion; it generated exact answers that could be 
scrutinized for structure and form; it helped students to verify their conjectures, as 
well as their paper-and-pencil responses; it motivated the checking of answers; and it 
created a sense of confidence and thus led to increased interest in algebraic activity. 
As space constraints do not permit the presenting of data to support each of these 
results, we will confine ourselves to what we believe is one of our most important 
findings with regard to the role that CAS can play in helping weaker algebra students.  

The CAS generates exact answers that can be scrutinized for structure and form. 

Of all the roles that the CAS played in this study, this was found to be the most 
crucial to the success of the weaker algebra student. It proved to be the main 
mechanism underlying the evolution in the CAS students’ algebraic thinking. 
Ironically, the crucial nature of this role was first made apparent to us by the voicing 
of a frustration by one of the students in the non-CAS class – a frustration that we 
will share shortly. First, we present the CAS version (see Figure 1), then the non-
CAS version (Fig. 2) of the task that led to this finding.  
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Activity 3 (CAS): Trinomials with positive coefficients and a = 1 ( ax 2
+ bx + c ) 

1. Use the calculator in completing the table below. 
Given trinomial (in 
“dissected” form) 

Factored form using 
FACTOR 

Expanded form using 
EXPAND 

(a) x 2
+ (3+ 4)x + 3• 4    

(b) x 2
+ (3+ 5)x + 3•5    

(c) x 2
+ (4 + 6)x + 4 •6    

(d) x 2
+ (3+ 5)x + 3• 3   

(e) x 2
+ (3+ 4)x + 3•6    

2(a) Why did the calculator not factor the trinomial expressions of 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 
factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if it is 
factorable? Explain and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form of the 
above trinomials in 1(a) – 1(c)? 

Figure 1: A task drawn from Activity 3 (CAS version). 
 

Activity 3 (non-CAS): Trinomials with positive coefficients and a = 1 ( ax 2
+ bx + c ) 

1. Complete the table below by following the example at the beginning of the table. 
Given trinomial (in 
“dissected” form) 

Factored form Expanded form 

Example: 
     x 2

+ (3+ 4)x + 3• 4  
x 2
+ (3+ 4)x + 3• 4  

= x 2
+ 3x + 4x + 3• 4  

= x(x + 3) + 4(x + 3) 
= (x + 3)(x + 4)  

 
x 2
+ 7x +12  

(a) x 2
+ (5+ 6)x + 5•6    

(b) x 2
+ (3+ 5)x + 3•5    

(c) x 2
+ (4 + 6)x + 4 •6    

(d) x 2
+ (3+ 5)x + 3• 3   

(e) x 2
+ (3+ 4)x + 3•6    

2(a) Why could you not factor the trinomial expressions in 1(d) and 1(e) above? 
2(b) How can you tell by looking at the “dissected” form (left-hand column) if a trinomial is 
factorable? 
2(c) If a trinomial is not in its “dissected” form but is in its expanded form, how can you tell if it is 
factorable? Explain and give an example. 
2(d) How would you describe the relation between the factored form and the expanded form of the 
above trinomials in 1(a) – 1(c)? 

Figure 2: The non-CAS version of the same task that was presented in Figure 1. 

Note that, in the CAS version of Question 1, students are asked to enter onto their 
worksheet the output produced by the CAS, while in the non-CAS version they are to 
record their paper-and-pencil factorizations and expansions. (N.B.: The “dissected” 
form of the first column was one that both classes were quite familiar with by the 
time they met this Activity.) The problematic nature of this task, and the potential of 
the CAS for assisting with such tasks, showed up when the students in the non-CAS 
class tried to tackle Questions 2c and 2d. 
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Students in the non-CAS class were at a loss to answer these explanation-oriented 
questions. They stated emphatically that they were not sure of their answers to 
Question 1, and could hardly use these as a basis for answering, say, Question 2d. As 
one student put it so forcefully: “How can we describe the relation between the 
factored form and the expanded form of these trinomials? – we don’t even know if 

our factorizations and expansions from Question 1 are right.” In contrast, the 
students in the CAS class had at their disposal a set of factored and expanded 
expressions that had been generated by the calculator. They thus had confidence in 
these responses and could begin to examine them for elements related to structure 
and form. 

CONCLUDING REMARKS 

This study analyzed the improvements of two classes of weak algebra students in 
both technique (being able to do) and theory (i.e., being able to explain why and to 
note some structural aspects), in the context of tasks that invited technical and 
theoretical development. One of the two participating classes had access to CAS 
technology for the study. At the outset, both the CAS class and the non-CAS class 
scored at the same levels in a pretest that included technical and theoretical 
components. However, the CAS class improved more than the non-CAS class on 
both components, but especially on the theoretical component. 

This is an interesting finding for several reasons. Many teachers insist that students 
learn to do algebraic work with paper-and-pencil first and only later use CAS – and 
then simply to verify the paper-and-pencil work. However, we found that the 
students’ paper-and-pencil technical work actually benefited from the interaction 
with CAS. The CAS provided insights that transferred to their paper-and-pencil 
algebraic work and enhanced their learning. Secondly, and this is quite an exciting 
finding: Being able to generate exact answers with the CAS allowed students to 
examine their CAS work and to see patterns among answers that they were sure were 
correct. This kind of assurance, which led the CAS students to theorize, was found to 
be lacking in the uniquely paper-and-pencil environment where students made few 
theoretical observations. The theoretical observations made by CAS students worked 
hand-in-hand with improving their technical ability. Last but not least, the CAS 
increased students’ confidence in their algebra. This confidence boosted their interest 
and motivation. These findings suggest that the algebra learning of weaker students 
can benefit greatly from the integration of CAS technology. 
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WHAT IS A BEAUTIFUL PROBLEM? 

 AN UNDERGRADUATE STUDENTS’ PERSPECTIVE 

Boris Koichu, Efim Katz and Abraham Berman 

Technion – Israel Institute of Technology 

 

In this paper, we present an approach to exploring students’ aesthetical preferences in 

mathematics. Based on analysis of 9 undergraduate students’ responses and behaviors 

in two problem solving workshops, we report essential elements of a preliminary 

student-centred model of the notion “beautiful mathematical problem.” The 

preliminary model includes cognitive, metacognitive and social factors and seeks to 

appreciate the complexity of the students’ aesthetical judgements.   

THEORETICAL BACKGROUND 

This paper is part of a series of reports on results of a large-scale project, in progress, 
whose purpose is to investigate high school students, undergraduate students and 
mathematics teachers’ beliefs and actions through the lens of mathematical aesthetics 
and to check the possibility of incorporating an aesthetic dimension in learning and 
teaching mathematics. The goal of this report is two-fold. First, we describe a research 
approach that seems to be useful in revealing complicated mechanisms involved in 
undergraduate students’ aesthetical judgement of a mathematical problem. Second, we 
suggest and illustrate elements of a preliminary model of the notion “beautiful 
problem” that seems to reasonably explain the (ostensibly) controversial evidence 
collected at the pilot stage of the project as well as some intriguing results of past 
research. 

The study is oriented within a theoretical framework that gradually emerges during the 
last 20 years from research on the role of aesthetics in doing, learning and teaching 
mathematics (e.g., Dreyfus & Eisenberg, 1986; 1996; Silver & Metzger, 1989; Sinclair, 
2004; Koichu & Berman, 2005; Sinclair & Crespo, 2006) and seeks to contribute to 
that framework. 

Twenty years ago, Dreyfus & Eisenberg (1986) pioneered the student-centric approach 
to exploration of aesthetics of mathematical thoughts. They suggested that the 
aesthetical considerations involve a personal internalized metric upon a solution to a 
particular problem. The factors contributing to the aesthetic appeal of a solution are 
clarity, simplicity, brevity, conciseness, structure, power, cleverness and surprise. This 
view fits that of many recognized mathematicians, including Hadamard (1945), 
Poincaré (1946) and Hardy (1956). In time, it figured out that what is viewed by the 
experts as “beauty of mathematics” does not look the same for high school, 
undergraduate and even graduate students. Dreyfus and Eisenberg explored university 
level students’ aesthetical preferences using a set of fairly difficult mathematical 
problems. Each problem had more than one solution, including a solution that had been 
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previously evaluated by the experts as “slickly” or “elegant” one. The problems were 
given in different formats to pre-service teachers of mathematics in Israel and graduate 
students in the USA. Not surprisingly, the students rarely came up with the elegant 
solutions. More surprisingly, when the elegant solution was presented to them and 
understood, most of the students “did not find the elegant [solution] any more attractive 

than the ones they had come with on their own—they failed to grasp its aesthetic superiority” 
(Dreyfus & Eisenberg, 1986, p. 7) even after probing. Dreyfus and Eisenberg 
concluded that the students showed no inner sense of feeling for the elegancy of a 
solution. This conclusion is in line with Krutetskii’s (1976) point that the tendency to 
appreciate the elegancy of a mathematical problem is an attribute of only exceptional 
mathematical giftedness. It is also in line with even more radical opinion of Von 
Glasersfeld who noted that we cannot expect students to show an appreciation for the 
beauty of mathematics (cited in Dreyfus & Eisenberg, 1986). In what follows, we 
suggest reconsidering a typical student’s “aesthetical blindness” on the ground of the 
evidence collected in the new experimental format and by calling into play more 
comprehensive explanations of the observed behaviors. At this point, we only point the 
reader’s attention to the fact that past research shows that the elite world of 
professional mathematicians and exceptionally gifted learners, on one side, and the rest 
of the world, on the other, seem antagonistic with respect to appreciating the beauty of 
mathematics. 

The situation within the world of professional mathematicians and the exceptionally 
gifted is also far from being simple or fully understood (see, for example, the responses 
to the Dreyfus and Eisenberg’s paper in the same 1986 issue of “For the learning of 
mathematics”). Two points from the research focusing on that elite population are 
particularly relevant to this paper. First, Silver & Metzger (1989) found that affect and 
aesthetics appear to serve as a basis for linking metacognitive processes, such as 
planning and monitoring in mathematicians’ problem solving (see also Goldin, 2002, 
and Sinclair, 2004, for analysis of a generative role of beliefs). Second, Koichu & 
Berman (2005) found that both social and cognitive factors interplay in 
effectiveness-elegancy conflict encountered by exceptionally gifted students when 
solving olympiad-style mathematics problems. 

On one hand, these findings point to complexity of the ways by which expert problem 
solvers call into play aesthetic considerations. On the other hand, they give a clue that 
metacognitive and social factors should be taken into account when exploring 
aesthetical judgements of different categories of problem solvers. This idea works well 
in research on problem solving strategies (e.g., Schoenfeld, 1987). Therefore, it can 
work also in research on aesthetical aspects of problem solving. The latter implication 
has driven our study and, specifically, our thinking of the following question: Which 
factors affect the undergraduate students’ conception of the notion “beautiful 
mathematical problem”? 
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THE METHOD  

The research setting and participants 

The data presented in the paper were collected during two consecutive workshops in 
the context of the undergraduate course “Selected problems in mathematics.” The 
notion “beautiful problem” had not been deliberately discussed in the course till the 
lessons described below. The participants were 9 third-year undergraduate students 
from the department of education, the department of mathematics and several 
engineering departments at the Technion. All the participants had solid background in 
formal mathematics.  The authors of the paper designed the workshops, and the first 
author served as an instructor. The workshops were videotaped with the camera trained 
at the participants; all written work of the students was collected. 

The first workshop  

The first workshop was designed to explore which characteristics of the given 
problems appear in the students’ aesthetical judgements. At the beginning of the 
workshop, the students were given 3 problems, each one consisting of three parts:  

Pr. 1. In the letters shop, one can buy letters. The cost of the letters needed to write the 

word ONE is $6. The cost of TWO is $9 and the cost of ELEVEN is $15. 

a) What is the cost of the word TWELVE? 

b) What is the cost of THIRTEEN? 

c) What is the cost of TEN? 

Pr. 2. A series of numbers is formed in the following way: The first number is 1, and then 

every number is obtained from the previous one according to the rule described below. 

Danny computed the first 2007 numbers in each of the three cases. How many (in each 

case) are divisible by 5? 

a) A number is obtained from the preceding number by adding 2. 

b) A number is obtained by multiplying the preceding one by 2 and adding 1. 

c) A number is obtained by multiplying the preceding one by 2. 

Pr. 3. A pedestrian and a bicyclist left Haifa and Atlit at 7:00 moving towards each other 

along the beach. The pedestrian walked from Haifa to Atlit while the bicyclist rode from 

Atlit to Haifa. Both of them moved in a constant velocity. When did the pedestrian reach 

Atlit in each of the following three cases?  

a)  The rider's velocity is 3 times the walker’s one and they passed each other at 8:15. 

b) At 8:00 the walker was in the middle between the rider and Haifa and the two passed 

each other at 8:15. 

c) The rider reached Haifa at 8:40. 

All the three problems are formulated in different styles to which we refer as 
“unconventional story”, “no story” and “conventional story”, respectively. Besides, 
they were carefully designed by the authors to meet several conditions: each problem 
contains items having more than one solution, one of which is shorter and more 
“slickly” than others; the items in each problem look similarly, but the solutions and 
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ways of finding them are different with respect to their difficulty and heuristic arsenals 
involved. To illustrate these conditions, consider Pr. 1 in some detail. The 
“unconventional story” can be represented as a system of 3 linear equations with 7 
variables. The “slickly” part follows. In item (a), there is no need for solving the 
system fully – it is enough to find the cost of the sum T+W+2E+L+V, which can be 
done very quickly; the only answer is “$18”. The answer to item (b) depends on the 
letters I and R, which are not mentioned among the givens. Thus, the answer “the cost 
is not determined by the givens” can be deduced with no technical effort. In item (c), 
the letters T, E and N appear among the givens, but the cost of their sum T+E+N cannot 
be found straightforwardly. The answer to (c) is the same as to (b), but to obtain it one 
should use apparatus learned in the first-year linear algebra course.  

The students were given about 40 minutes to individually approach/solve the problems. 
Afterwards, the students filled in the questionnaire, in which they were asked to 
individually evaluate difficulty, challenge and beauty of the problems using 1 to 10 
scales. The three features were evaluated separately for each item, thus, each student 
indicated 9 3 27× =  numerical responses. The students were also encouraged to briefly 
explain the responses. When the questionnaires were completed, each student 
explained orally his or her opinion about the problems to the classmates and the 
instructor, and then the whole class discussion emerged. It was focused on the 
relationship among difficulty, challenge and beauty of the given problems. Finally, the 
students were asked to come back to their questionnaires and indicate whether or not 
they reconsider their previous responses. 

The second workshop 

The second workshop was designed to explore to which extent knowing the 
expert-provided “elegant” solution to a problem affects the students’ aesthetical 
judgement. Three problems from Pólya and Kilpatrick’s (1974) “The Stanford 

mathematics problem book with hints and solutions” were used for this purpose (Pr. 
58-1, 58-2 and 58-3, p. 17). There is no space to present the problems here. We only 
note that: the problems included an “unconventional story”, “no story” and 
“conventional story” in the meaning explained above; each problem had several 
solutions, including the “slickly” one; the problems were more difficult than those of 
the first workshop. 

The students were asked to read the problems, and, based on the first impression only, 
evaluate each problem’s beauty using 1 to 10 scales. They were also encouraged to 
explain their numerical responses. Then the students were given the written solutions 
to the problems from the Pólya and Kilpatrick’s book. When the solutions were fully 
understood (this was evident from the brief discussions of the solutions), the students 
were asked to consider whether or not they want to reconsider their initial evaluation of 
the beauty of the problems. This was followed by a whole group discussion, in which 
the students’ expressed their beliefs about what a beautiful problem is.  
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ANALYSIS 

The data analysed consist of the students’ written responses to the questionnaires, 
transcripts of the videotaped workshops and notes the students made. Because of the 
small number of the participants, we treated the data chiefly as a set of individual cases, 
in which we looked for patterns particularly interesting with respect to the research 
question. Following Pierce, Clement (2000) refers to such a method of analysis as 
abduction – a process of producing a model that, if it were true, would account for the 
observed phenomena. Thus, the concern about viability rather than validity of the 
findings is relevant in our research. 

In addition, correlation analysis was conducted to explore the relationships among the 
students’ numerical evaluation of difficulty, challenge, and beauty of the problems 
given in the first workshop. To avoid overestimation of small fluctuations in the 
students’ responses, we converted the responses from 1 to 10 into 1 to 3 scales. Namely, 
numerical responses 1-3 to the questions “To which extent the problem is 
difficult/challenging/beautiful?” were interpreted as “the problem is easy/not 
challenging/not beautiful” and re-denoted “1”. Responses 4-7 were interpreted as ”the 
problem is fairly difficult/challenging/beautiful” and re-denoted “2”. Responses 8-10 
were interpreted as “the problem is very difficult/challenging/beautiful” and 
re-denoted “3”. The quantitative results below concern the converted responses.  

RESULTS 

The students expressed controversial opinions about beauty of the problems given at 
the first workshop. Correlations between difficulty and beauty as well as challenge and 
beauty were close to 0 for all the problems. Styles of the problems’ formulation did not 
show themself as a relevant factor either. The students alluded rather to novelty and 
unexpectedness as associates of beauty. Consider, for instance, the students’ responses 
and statements concerning Pr. 1. One student indicated that Pr. 1(a) is “very beautiful”, 
3 – that it is “fairly beautiful”, and 5 – that it is “not beautiful;” nobody mentioned the 
“unconventional story” as a factor affecting the judgement. Three students found a 
“slickly” solution to Problem 1a (see the previous section), and the rest solved it by 
more than one page long manipulations of the initial system of equations. The student 
that evaluated Pr. 1(a) as “very beautiful” solved it in the “slickly” way and explained: 
“I like it as I’ve not met such problems before.” Two others, who found the same short 
solution to the problem, did not find it beautiful for two reasons. First, “It was clear what 

to do,” and, second, “The problem is a technical one anyway”. These arguments were 
shared by most of the students. For example, one of the students, who solved the 
problem in a long way, reflected on his solution as follows: “It is not difficult. You just 

try different combinations, sums and differences [of the equations]. You are not looking for a 

new idea…”  

A remarkable discussion emerged from the students’ reflection on Pr. 1(b) and 1(c).   

Alex: You can see immediately that there is no specific solution to 1(b), so it is not too 
beautiful. But when you solve 1(c), you just work and work, and think that you 
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have a way, the same one as in 1(a), and finally you haven’t, and must think why… 
This is nicer than in a problem that can be solved in a regular way. 

Instructor: You gave us an excellent explanation about the difference between a beautiful 
problem and a difficult one. But, perhaps, the “beauty” [of a problem] equals to 
[its] “challenge”? 

Alex: Perhaps…  

Baruch: No, not equals. If a problem is beautiful, it is also challenging, but if a problem is 
challenging, it is not necessarily beautiful. 

Eli:    I disagree, not every beautiful problem is challenging. There are some geometry 
problems…very beautiful and not challenging… Or number theory 
problems…They can be very challenging, but are not really beautiful. I think there 
is no connection… 

Gila:  Yes, beauty is not a challenge and not a difficulty; it is more than that…  

Interestingly, all the students showed keen interest in the whole group discussion, but 
nobody changed his or her aesthetical judgement of Pr. 1(a) and 1(b) by the end of the 
discussion; only two students changed their opinions regarding 1(c) from “not 
beautiful” and “fairly beautiful” to “very beautiful”. 

The additional phenomena deduced from the analysis of the first workshop include: 

- Six students did not change any of their opinions about the beauty of any problem 
during the workshop. 

- Pr. 2(b) was considered the most beautiful one (mean=2.88, SD=0.35), but when a 
simple solution was presented, 3 students changed their opinion from “very beautiful” 
to “fairly beautiful” and “not beautiful” (mean=2.22, SD=0.83) 

- The students’ opinions about beauty of Pr. 2 and Pr. 3 varied, but 7 of them gave the 
same rates to items (a), (b) and (c) of these problems, even when knowing that the 
solutions are very different. It seemed that the mathematical affiliations of the problem 
(e.g., a series problem and a word problem) affected the students’ aesthetical 
judgments more than inter-item differences.    

Additional phenomena were observed in the second workshop. Namely, the students 
were able to evaluate to which extent the given problems are beautiful based on their 
first impression. All the students, but two, did not change their opinions after 
understanding the expert-provided solutions. Pre-post explanations of those who did 
not change their opinions include:  

Hava:    [Pre:] It looks like a tricky question. [Post:] I was right, it is a tricky question. 

Tamar: [Pre:] I‘ve solved a similar problem in the past, that’s why the level of beauty is 
not high. [Post:] The way of the solution is as I expected. 

Baruch: [Pre:] It looks like a challenging problem. [Post:] I did not appreciate the solution 
as I could discover it myself. 

Two students, who essentially changed their opinions, explained:  

Uri:    [Pre:] It is not nice and unsolvable. [Post:] When I looked at the solution, I realized 
that there was a nice solution. 
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Eli:    [Pre:] It is an interesting problem, it says something general about triangles. [Post:] 
It is even more beautiful than I thought as it is very general, but relies on simple 
and basic geometry facts.  

In the follow-up discussion, the students elaborated their written responses. A brief 
summary of the discussion is this: A student’s aesthetical judgment of a problem is 
based mostly on the first impression and cannot be easily changed.  The changes, if any, 
are based on acknowledgement that an idea of an expert-provided solution could be 
discovered by the student independently, but had not come to his or her mind when 
reading the problem.   

DISCUSSION AND CONCLUDING REMARKS 

The research question under exploration was: Which factors affect the undergraduate 
students’ conception of the notion “beautiful mathematical problem”? To address this 
question, we designed a research setting, in which undergraduate students’ aesthetical 
preferences in mathematical problem solving could be evoked. We hope that the 
setting can be used in the growing body of research on mathematical aesthetics.   

In response to the research question, we suggest: (1) a student’s perception of a notion 
“beautiful problem” is deeply individual and involves more sophisticated 
considerations than difficulty, challenge or a style of a problem’s formulation; (2) from 
a student’s perspective, a problem can be beautiful if it is characterized by the 
following traits: it has a mathematical affiliation associated with a high level of 
aesthetic value (e.g., geometry for one student and number theory for another); it looks 
new;  its solution is accessible, but includes elements of surprise, for instance, it is 
easier or based on more elementary mathematical tools than it was expected by the 
student when reading the problem.  

These suggestions are in line with those by Koichu & Berman (2005), who utilized the 
principle of parsimony to explain the conflict between the mathematically gifted 
students’ conceptions of elegancy and effectiveness in problem solving. They are also 
in a good agreement with Silver & Metzger’s (1989) point about the role of aesthetics 
in metacognitive processes, such as planning and monitoring, of mathematicians. Thus, 
the presented findings may imply that the gap, with respect to mathematical aesthetics, 
between mathematicians and the gifted, on one side, and university level students, on 
the other, is smaller than it seems.      

The presented findings may also lead to reconsideration of the “aesthetical blindness” 
of university level students indicated in past research. On one hand, in our research 
there were participants who refused to acknowledge “the aesthetic superiority” of the 
“slickly” solutions suggested by the experts (see discussion of Dreyfus & Eisenberg, 
1986, in Theoretical Background section). On the other hand, the findings points to the 
importance of socially-based factors like self-esteem of the students as problem solvers, 
which has not been taken into account in past research. We suggest that the latter factor 
could in part explain why, in the Dreyfus & Eisenberg’s (1986) study, the students’ 
aesthetical judgments were not apparent. 
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In closing, let us note that we are fully aware of the limitations of the implemented 
method and the preliminary character of the findings. We hope that in the near future 
the viability of the presented elements of the student-centered model of the notion 
“beautiful mathematical problem” will be tested by additional observations.   
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CAN LESSONS BE REPLICATED? 

Angelika Kullberg 

Göteborg University, Sweden 

 

If you have found a powerful way of teaching a particular topic – such as the infinity 

of decimal numbers, for example – how can you enable other teachers to use the 

same approach in an equally successful way. This is a general problem in the 

attempts to improve teaching. The main question is how to describe the successful 

way of teaching – the powerful lesson design. Using a certain theory of learning, the 

essential structure of a lesson on the infinity of decimal numbers that proved to be 

highly effective previously is described, in terms of a pattern of variation and 

invariance. In this study I am showing that when the teacher succeeds in replicating 

that pattern, the effects on learning are replicated also. 

 

INTRODUCTION  

If you search the Internet for the word lesson plan over two hundred thousand sites 

are found. On those web pages teachers share their good teaching ideas with other 

colleagues. But in what way could lesson plans be a resource for teachers? Can other 

teachers’ lessons be replicated with similar results, even in terms of learning 

outcomes? Results from a research project, done in collaboration with teachers, found 

that two lesson designs about infinity of decimal numbers generated different 

learning outcomes. With the first lesson design, 21% of the students learned that 

there were infinite number of decimal numbers, compared to 94% and 88% in the 

classes with the second lesson design. The second lesson design appeared to create 

better possibilities for learning in this study (Kullberg, 2004). But is it possible to 

replicate a lesson and the result with other groups of students? In this new study, 

which could be described as a teaching experiment, the second lesson design was 

tested by two teachers. The result showed that in one class (class B) 100% of the 

students learned compared to the other class (class A) in which the improvement was 

much smaller. In this paper this result is explained by an analysis of the students’ 

group activity and the analysis of how the content was handled in the interaction 

between the teacher and students and between students. The result of the study shows 

that it is not the lesson design that predicts the students’ learning but rather the 

content specific features that need to be brought up. From the theoretical framework 

taken, it is therefore not the activities or the organization of teaching, for example if 

the teaching is student centred or not that is of decisive importance, but which 

features of the content that are brought out during the lessons. What happened during 

these lessons and what where the students able to discern? The aim with this paper is 

to show why the same lesson design generated different learning outcomes in the two 

classes.  
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LESSON DESIGNS 

A Learning study (LS) is an intervention model in which teachers work together in 

teams with designing a lesson on a specific topic, in collaboration with a researcher. 

The aim of this collaborative effort is to improve students’ learning. Marton (Marton 

& Tsui, 2004) developed this model with insights from Lesson study (Lewis, 2002; 

Stigler & Hiebert, 1999) and Design experiments (Brown, 1992; Cobb et al., 2003; 

Collins, 1992) in the year 2000. Lessons from LS were in this new study used to 

define a lesson design. In this research project a lesson design is not seen as a 

technology of teaching. It is not a manuscript with specific instructions for the 

teacher but instead a frame of critical features that is needed to be brought out by the 

teacher together with the students, with the aim to be discerned by the student. In a 

lesson design it is therefore not the methods or the organization of teaching that are 

pointed out. So, what features of the content needs to be brought out when teaching 

about infinity of decimal numbers? 

A considerable amount of research has been done investigating students’ 

understanding and conceptions of decimal numbers (Sackur- Grisvard & Léonard, 

1985; Hiebert & Wearne, 1986; Steinle, 2004; Roche & Clarke, 2006). Steinle (2004) 

refers to eleven inadequate strategies that students use when dealing with decimals, 

for example, students see a decimal number with many digits after the decimal point 

as a smaller number than a decimal number with fewer digits. Some students use the 

opposite ‘rule’, fewer digits after the decimal point indicates a smaller number. From 

these studies it becomes clear that students often treat decimal numbers as whole 

numbers. Roche and Clarke (2006) claim that the use of fractional language to 

describe decimals more often may contribute to a clearer conception of the decimal 

numeration system. Many other studies also point out that the relationship between 

fractions and decimals can be used to support the development of decimal knowledge 

(Moskal & Magone, 2001 p 317). Though, it has been found that students fail to 

establish the connection between the two. Moskal and Magone imply that knowledge 

of the whole number system and knowledge of fractions can both assist and confuse 

students’ understanding of the decimal system. The previous research contributed in 

the LS to the finding of important features for teaching about infinity of decimal 

numbers. In the first lesson design from the LS the decimal numbers were treated and 

seen as numbers on a number line. Since the result after this lesson showed that only 

21% of the students in that class had learned what was planned, a second design was 

made. In the second lesson design decimal number was presented in different forms 

of rational numbers such as fractions and percentage. Another difference was that in 

the second lesson design the part-part-whole relationship of a decimal number was 

emphasised. The part-part-whole relationship, meaning that you can see a decimal 

number, for example 0.97, as a part of a whole, since it is possible to take 0.97 of 

something, a ruler, a human being or a pen. The part-part- whole relationship 

emphasises the relationships of the parts in similar ways in to other forms of rational 

numbers. Fractions show in an explicit way the different parts and can express 
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smaller and smaller parts. In conclusion the second designed lesson included the 

following features; 

 

• Decimal numbers as numbers on a number line 

• Different forms of rational numbers such as fractions and percentage  

• The part-part-whole relationship of a decimal number 

 

The different designs can be described as two different ways for the students to 

discern decimal numbers, as numbers in an interval or as number of parts in an 

interval (figure 1). 

Lesson design 1:  Lesson design 2: 

Numbers in the interval    Number of parts in the interval 

 

 

             0.17                 0.18                                       0.17                  0.18 

 

 

Figure 1. Different ways of discerning the interval of two decimal numbers. 

The interest of this study is to test the lesson design that generated strong learning 

outcomes. Therefore lesson design 2 has been chosen to be replicated in this study. 

THEORETICAL FRAMEWORK  

Variation theory (Marton & Tsui, 2004), developed from phenomenographic research 

(Marton & Booth, 1997), is the theoretical framework for this study. Variation theory 

is a theory about how we learn and experience the world around us. Within this 

framework learning is seen as differentiation. To learn is to discern specific features 

of an object of learning. People discern different features/aspects and therefore have 

different learning outcomes. To be able to discern an aspect it must be varied in order 

to be noticed. In other words, every concept, situation or phenomena have particular 

features or aspects and if an aspect is changed or varies and another remains 

unchanged, the changed aspect will be noticed. From this viewpoint teachers could 

make it possible for the students to experience necessary variation and invariance for 

a particular object of learning, the critical aspects or features. Marton, Runesson and 

Tsui (2004) argues that “The critical features have, at least in part, to be found 

empirically- for instance through interviews with learners and through the analysis of 

what is happening in the classroom- and they also have to be found for every object 

of learning specifically, because the critical features are critical features of specific 

objects of learning” (p 24). Critical features have been found in the analysis of pre- 
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and post-tests and/or in the analysis of lessons. Research literature could also 

contribute to the finding of critical features. However, it is not beneficial to learning 

to just tell the students the critical features, these must be discerned by the learner. 

This means that the teacher must focus the students’ attention to critical features. If 

the student can not differentiate between specific features, they will have difficulties 

learning. Therefore experiencing variation concerning critical features for learning is, 

according to variation theory, essential for learning. 

METHOD AND DESIGN OF THE STUDY 

The research design for this study consisted of two teachers that conducted one 

lesson each with the same lesson design. This is an experimental design and could be 

seen as an example of design research or design experiments (Brown, 1992; Collins, 

1992; Cobb et al, 2000). Single lessons were the units of analysis to see how the 

content was handled in each lesson. The lessons were implemented in ordinary 

classrooms, with 6
th
 grade students (12 year old), and were video recorded. Besides 

the video recorded lessons individual pre- and post-test were used to capture 

students’ learning outcomes. The pre- and post-test were the same and several items 

tested the same ability. The pre-test was given a week before the research lesson and 

the post-test was given one day after the lesson. Material from the students’ group 

activity is also analysed in this study. It should be noted that in this study, the two 

teachers jointly planned the lesson together with the researcher. The teachers had 

therefore the same intentions, tasks and activities for the lesson. Thus, none of the 

teachers gave the right answer to the question in the group activity to the students. 

RESULTS 

The two tasks (“Anne claims that there is a number between 0.97 and 0.98. John says 

there is no such number. Who is right and why?” and “Are there numbers between 

0.5 and 0.6?”) were used in the pre- and post-test. In the students’ written 

explanations it was possible to analyse if they thought that there were infinite number 

(expressed by the students in some cases as millions of numbers, or many, many 

numbers or infinite numbers) of decimal numbers. Students that did not answer 

correct on these items answered, for example, that there were no numbers, or ten 

numbers in the intervals. The result from the post-test showed that 100% of the 

students in class B answered correct on the tasks about infinity (see table 1) 

compared to 69% of the students in class A. Considering that the difference between 

the pre- and post-test in class A was only 4%, the result from the LS was not 

replicated in this class, only in class B. The analysis of the lesson and the analysis of 

the students’ group activity indicate that the connection to fractions was not brought 

out in the lesson in a sufficient way in class A (see tentative analysis of the lessons 

below).  
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Table 1. Percentage of students given correct answers on post-test items on the 

infinity of rational numbers. 

 Class A (n=13) Class B (n=13) 

Result on post-test 69% 100% 

Difference in percentage 

between pre- and post-test 

+4% +62% 

 

Tentative analysis of the lessons  

The two lessons were organized the same way and used the same tasks. They started 

with an introduction, followed by a group activity and ended with an oral account and 

discussion over the activity. Despite that the learning outcomes were different (see 

table 1). Within the variation theory framework critical features of the content must 

be brought out and varied for learning a specific content. In the following 

descriptions of the lessons the features that were brought out in the lessons are 

expressed. In class A and B the teachers started the lessons with the same question, 

namely if there were numbers between two whole numbers, for example 2 and 3. The 

students contributed by naming many numbers in the interval (e.g. 2.2, 2.5 and 2.35). 

The teachers in both class A and B then took two decimal numbers, e.g. 0.17 and 

0.18 and wanted to students to come up with other names for the decimal numbers. 

The students contributed to naming the decimal numbers with fractions for example 

as seventeen and eighteen hundreds.  

In class A also the written form, 17/100 was drawn on the board. The teacher in class 

A raised the question if 17/100 and 0.17 was the same thing, but this question was 

never answered by the students in this class. Another feature that was present was the 

part-part-whole relationship of a decimal number. The teacher in class A used a ruler 

to show this and asked where the two decimal numbers 0.17 and 0.18 could be seen 

on it. In this case 0.17 and 0.18 was seen as different parts of a one meter ruler, 

namely, 17 and 18 centimetres. Another ‘whole’, the human body was also used for 

showing the same thing. The decimal numbers were representing different parts (cut 

off) from the human body. After that the teacher in class A focused on the space 

between the two numbers 0.17 and 0.18 on the number line and asked if there are any 

numbers in the interval? This was also the question for the students’ group activity 

(see below). In conclusion, in class A fractions was used to represent the decimal 

numbers but the meaning of fractions as parts was not made explicit.  

In class B on the other hand this relationship was made clearer. This was done by 

naming the same number 0.30 with different number of parts in the fractions 3/10 and 

30/100. A drawn cucumber was used to illustrate the part-part-whole relationship of a 

rational number. In this case 0.29 and 0.30 was seen as parts of a cucumber. In a 

comparison of the numbers the space between 0.29 and 0.30 were expressed as 

different amount of parts in the interval such as 1/100, 10/1000, 100/10000 etc. The 
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Figure 2. An example of a student answer 

from the group activity in class B, showing 

different number of parts in the interval.  

same interval was in this case seen as smaller and smaller parts of the cucumber. This 

was done before the students started their group activity. 

Students’ group activity 

The task that was discussed during the group activity in both classes was if there are 

any numbers between the two decimal numbers 0.17 and 0.18. The students were 

asked to draw a picture on paper of their answer and present it to the whole class in 

the end of the lesson. A follow up question to the task was if there are more numbers, 

less numbers or the same number of decimal numbers between 1 and 2 than between 

the two decimal numbers. In class A this later question was focused on more than in 

class B. The account of the students’ group activity showed that the only group that 

used fractions to explain their solution of the task was students in class B, where two 

out of three groups did this. The fact that the students used fractions and showed the 

connection between fractions and decimals in the account of the group activity in 

whole class probably contributed to the good result for all students in class B (table 

1), where 100% of the students answered correct on tasks about infinity of decimal 

numbers. One group in class B only presented numbers in the interval on their paper, 

for example 0.171, 0.172, 0.173… up to 0.1718, and showed that even more numbers 

came after that number. (In this group and many other groups in this study the 

number 0.1718 was seen as a higher number than 0.172, but this was never discussed 

in the lessons.) In all groups in class A (4 groups), only decimal numbers in the 

interval were presented in the students’ 

group work.  

As is shown in figure 2 one of the groups 

that (in class B) used both fractions and 

decimals in their answer also wrote decimal 

numbers on a number line to show numbers 

between O.17 and 0.18 (0.171, 0.172, 0.173 

0.174, 0.175, 0.176, 0.177, 0.178, 0.179). 

Additionally they had also drawn a circle 

showing the numbers 0.17 and 0.18, as a part 

of a circle of hundreds (see figure 2). This 

had not been promoted or shown by the 

teacher. This group also wrote that between 

0.17 and 0.18 there where 1/100, 10/1000, 100/10000, 1000/100000, 10000 /1000000, 

100000/ 10000000, 1000000/ 100000000 or 10000000/ 1000000000 etc. In this case 

the group showed the interval 0.17 and 0.18 as invariant/constant but the number of 

parts in the interval varied. In the groups in class A, the interval was also constant 

(since they used the same interval) but the numbers in the interval varied. The later 

way of experience rational numbers promotes the view that rational numbers are 

countable. This view probably makes it harder to understand infinity of rational 

numbers while bringing up the feature of parts in an interval promotes the 

understanding of infinity in a more adequate way.  
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CONCLUSIONS  

Although the relation between teaching and learning is not ‘one to one’, similar 

results in terms of learning outcomes with the same lesson designs appear. What has 

been showed in this study is that when the teacher succeeds in replicating the specific 

pattern of variation and invariance, the effects on learning are replicated also. It is 

therefore not the lesson design that should be replicated but rather the pattern of 

variation and invariance of the critical features. In a teaching experiment like this, it 

is profoundly important to analyse what happens in the classroom in the interaction 

between the teacher and students and between students. A good lesson design is 

therefore not a guarantee for student learning. 

In this study about infinity of decimal numbers the connection between fractions and 

decimal numbers, seen as parts in an interval was not discerned by all students in 

class A. In this case the teacher used fractions to represent decimal numbers but did 

not bring up the feature of parts in the interval. The pattern, where the interval was 

invariant and the number of parts in the interval varied was replicated in class B and 

in that case also the result of the learning outcome from previous studies was 

replicated. 
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PROBLEM POSING AS A MEANS FOR DEVELOPING 
MATHEMATICAL KNOWLEDGE OF PROSPECTIVE 

TEACHERS 
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Emek Yezreel Academic College / Oranim Academic College of Education 

Abstract 

In the present study we aim at exploring the development of mathematical knowledge 

and problem solving skills of prospective teachers as result of their engagement in 

problem posing activity. Data was collected through the prospective teachers’ 

reflective portfolios and weekly class discussions. Analysis of the data shows that the 

prospective teachers developed their ability to examine definition and attributes of 

mathematical objects, connections among mathematical objects, and validity of an 

argument. However, they tend to focus on common posed problems, being afraid of 

their inability to prove their findings. This finding suggests that overemphasizing the 

importance of providing a formal proof prevents the development of inquiry abilities.  

Introduction 

Problem posing (PP) is recognized as an important component of mathematics 

teaching and learning (NCTM, 2000). In order that teachers will gain the knowledge 

and the required confidence for incorporating PP activities in their classes, they have 

to experience it first. While experiencing PP they will acknowledge its various 

benefits. Hence such an experience should start by the time these teachers are being 

qualified towards their profession. Therefore, while working with prospective 

teachers (PT) we integrate activities of PP into their method courses. In addition, 

accompanying the process with reflective writing might make the PT be more aware 

to the processes they are going through (Campbell et al, 1997), and as a result 

increase the plausibility that the PT will internalize the effect of the processes that are 

involved in PP activities. This reflective writing also enables teacher educators to 

evaluate the PT progress and performance (Arter & Spandel, 1991).   

In the present study we aim at exploring the effects of experiencing PP on the 

development of PT’s mathematical knowledge and problem solving skills. For that 

purpose we employed two evaluative tools – portfolio and class discussion.  

Theoretical Background  

This section includes a brief theoretical background regarding problem posing, with a 

special focus on the “what if not?” (WIN) strategy, and regarding the educational 

value of integrating PP into PT’s training programs. 

Problem posing. Problem posing is an important component of the mathematics 

curriculum, and is considered to be an essential part of mathematical doing (Brown & 

Walter, 1993, NCTM, 2000). PP involves generating of new problems and questions 

aimed at exploring a given situation as well as the reformulation of a problem during 

the process of solving it (Silver, 1994). Providing students with opportunities to pose 
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their own problems can foster more diverse and flexible thinking, enhance students’ 

problem solving skills, broaden their perception of mathematics and enrich and 

consolidate basic concepts (Brown & Walter, 1993, English, 1996). In addition, PP 

might help in reducing the dependency of students on their teachers and textbooks, 

and give the students the feeling of becoming more engaged in their education. 

Cunningham (2004) showed that providing students with the opportunity to pose 

problems enhanced students’ reasoning and reflection. When students, rather than the 

teacher, formulate new problems, it can foster the sense of ownership that students 

need to take for constructing their own knowledge. This ownership of the problems 

results in a highly level of engagement and curiosity, as well as enthusiasm towards 

the process of learning mathematics. 

The ‘What If Not?’ strategy. Brown & Walter (1993) suggested a new approach to 

problem posing and problem solving in mathematics teaching, using the ‘What If 

Not?’ (WIN) strategy. The strategy is based on the idea that modifying the attributes 

of a given problem could yield new and intriguing problems which eventually may 

result in some interesting investigations. In this problem posing approach, students 

are encouraged to go through three levels starting with re-examining a given problem 

in order to derive closely related new problems. At the first level, students are asked 

to make a list of the problem’s attributes. At the second level they should address the 

“What If Not?” question and than suggest alternatives to the listed attributes. The 

third level is posing new questions, inspired by the alternatives. The strategy enables 

to move away from a rigid teaching format which makes students believe that there is 

only one ‘right way’ to refer to a given problem. The usage of this problem posing 

strategy provides students with the opportunity to discuss a wide range of ideas, and 

consider the meaning of the problem rather than merely focusing on finding its 

solution.  

The educational value of integrating problem posing into PT’s training programs. 

Teachers have an important role in the implementation of PP into the curriculum 

(Gonzales, 1996).  However, although PP is recognized as an important teaching 

method, many students are not given the opportunity to experience PP in their study 

of mathematics (Silver et al., 1996). In most cases teachers tend to emphasize skills, 

rules and procedures, which become the essence of learning instead of instruments 

for developing understanding and reasoning (Ernest, 1991). Consequently, 

mathematics teachers miss the opportunity to help their students develop problem 

solving skills, as well as help them to build confidence in managing unfamiliar 

situations. Teachers rarely use PP because they find it difficult to implement in 

classrooms, and because they themselves do not possess the required skills (Leung & 

Silver, 1997). Therefore, PT should be taught how to integrate PP in their lessons. 

Southwell (1998) found that posing problems based on given problems could be a 

valuable strategy for developing problem solving abilities of mathematics PT. 

Moreover, incorporating PP activities in their lessons enables them to become better 

acquainted with their students' mathematical knowledge and understandings.  
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O1 

The study 

The study participants. 25 mathematics PT (8 male and 17 female) from an academic 

college participated in the course. They are in their third year of studying towards a 

B.A. degree in mathematics education. The students represented all talent levels. The 

students are graduated towards being teachers of mathematics and computer science 

or teachers of mathematics and physics in secondary and high school.   

The course. The course in which the research was carried out is a two-semester 

course and is a part of the PT training in mathematics education. This course is the 

first mathematical method course the PT attend, and takes place in the third year of 

their studies (out of four). The research was carried out during the first semester. 

Problem posing and problem solving, based on the WIN strategy, is one of the main 

issues discussed in this semester. The lessons usually bear a constant format: By the 

end of the lesson the PT were given an assignment, which was aimed at supporting 

them progressing in their work (more details about the phases of the work are 

presented at the next section). During the week the PT had to accomplish the 

assignment and describe their work in a reflective manner using a written portfolio. A 

copy of the portfolio was sent to us by e-mail, reporting their progress, indecisions, 

doubts, thoughts and insights. When we got the impression that the PT were not 

progressing we suggested them with new view-points, which were consistent with 

their course of work. These portfolios served as a basis for class discussion at the 

successive lesson. Part of each class discussion was allocated to presentations of the 

PT’s works.   

The problem. The described process was the first time the PT experienced PP. We 

demonstrated its various phases using Morgan’s theorem (Watanabe, Hanson & 

Nowosielski, 1996). Afterwards, the PT experienced it themselves, starting with the 

problem described at Figure 1. The reason for choosing this specific problem was its 

variety of attributes and its many possible directions of inquiry which might end with 

generalizations.  

 Triangle ABC is inscribed in circle O1. 

D is a point on circle O1. Perpendiculars are drawn from D 

 to AB and AC. E and F are the perpendiculars' intersection 

 points with the sides, respectively. Where should D be  

located so that EF will be of a maximum length?   

 

Employing the WIN strategy. The PT were asked to go through the following phases: 

(1) Solve the given geometrical problem; (2) Produce a list of attributes; (3) Negate 

each  attribute and suggest alternatives; (4) Concentrate on one of the alternatives, 

formulate a new problem, and solve the new problem; (5) Raise assumptions and 

verify/refute them; (6) Generalize the findings and draw conclusions; (7) Repeat 

Figure 1 
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phases 4-6, up to the point in which the PT decide that the process had been 

completed.  

 Data Collection and analysis. In this paper we focus on data concerning the 

development of mathematical knowledge and inquiry abilities as a result of 

employing the WIN strategy, based on the above problem. Two main sources of data 

informed the study: The PT’s portfolios, and the class discussions in which the PT 

presented their works and discussed various issues that were raised while reflecting 

on their experience. When the data collection phase was completed, we followed the 

process of analytic induction (Goetz & LeCompte, 1984), reviewing the entire corpus 

of data to identify themes and patterns and generate initial assertions regarding the 

effect of the PP on the PT mathematical and didactical knowledge. These research 

tools enabled us to study the PT’s development of mathematical knowledge as well as 

their inquiry abilities.   

RESULTS AND DISCUSSION 

In this section we focus on results obtained at phases 2, 3 and 4. 

Phases 2 and 3. Figure 2 summarizes the list of attributes (in bold) the PT related to 

the given problem; the number of students that suggested a certain attribute and in 

parentheses the percentage of students who suggested it, out of 25 PT. Then appear 

the suggested alternatives and the number of students that proposed the alternative 

together with percentages (out of the total students who suggested this alternative). 

For example, the attribute “any triangle” was suggested by 18 PT which is 72% of 

the 25 study participants. Out of the 18 PT, 9 suggested the alternative “Acute 

triangle”. Namely, (50) designate the fact that 50% of the 18 PT suggested this 

alternative. 

 

Observation of Figure 2 reveals the following: (a) In case the attribute includes a 

geometrical shape, most of the suggested alternatives were either a common 

geometrical shapes or a shape that belongs to the same family as the negated shape. 

For example, in case of negating the triangle (attribute no. 1), all PT suggested the 

common shape - quadrangle. Most of them (20) suggested the square. In case of 

negating attribute no. 5, most PT suggested as alternatives for the circle, shapes 

which belong same family, namely – square, quadrangle, rectangle and trapezoid. 

Only minority of them suggested polygons with more than four sides. Moreover, only 

two of them referred to a three dimensional shape. (b) In case the attribute includes a 

numerical value, most of the PT suggested as an alternative to this attribute another 

specific numerical value. For example, 11 PT listed attribute no. 7. All of them 

suggested as an alternative “Three segments are drawn from the point”. These 

findings are consistent with Lavy & Bershadsky (2003), who found that while PT are 

posing problems on the basis of spatial geometrical problem, they tend to replace 

numerical values with other numerical values, and geometrical shapes with shapes 

that belong to the same family. (c) Part of the alternatives given by the PT includes 

generalization. Though only minority of the alternatives was formed as generalization, 

two types of generalization can be observed: generalization of a numerical value of 
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an attribute and generalization of a geometrical shape. As to the former, a specific 

numerical value was replaced by n-value. For example, a generalization of attribute 

no. 7 is 7.2, and of attribute no. 8 is 8.2.  As to the latter, the generalization of a 

geometrical shape can be divided into two sub-categories: generalization of the 

number of the shape’s sides (e.g. attribute no. 1 is generalized by “n-sided polygon”), 

and generalization of shape’s dimensions – a shift from a planar into a spatial shape. 

In attribute 5, for example, the planar shape “circle” was replaced by “sphere” up to 

“any spatial body”.  

  

1. Triangle 25(100) alternatives: (1.1) Quadrangle 25 (100); (1.2) Square 20 (80); (1.3) Pentagon 14 

(56); (1.4) n-sided polygon 4 (16). 2. Placing a point on the circle perimeter 25(100) alternatives: 

(2.1) Placing a point inside the circle 25 (100); (2.2) Placing a point outside the circle 25 (100). 3. Two 

heights are drawn from the point to the sides of the triangle 25(100); alternatives: (3.1) Two angle 

bisectors are drawn 25 (100); (3.2) Two medians are drawn 25 (100); (3.3) Two perpendicular bisectors 

are drawn 10 (40); (3.4) One height and one median are drawn 3 (12). 4. Looking for a location to 

point D in order for EF to be a maximum 25(100); ) alternatives: (4.1)Looking for a location to point 

D in order for EF to be a minimum 25 (100); (4.2) Looking for a location to point E in order for EF to 

be a maximum 17 (68); (4.3) Looking for a location to point E in order for EF to be a minimum 17 (68); 

(4.4) Looking for a location to point F in order for EF to be a maximum 17 (68); (4.5)Looking for a 

location to point F in order for EF to be a minimum 17 (68); (4.6) Looking for a location to point D in 

order for ratio between the area of ABC and DEF to be maximal/minimal 5 (20); (4.7) Looking for a 

location to point D in order for ratio between the perimeter of ABC and DEF to be maximal/minimal 5 

(20); (4.8) Looking for a location to point D in order for ABC and DEF to similar triangles 4 (16); (4.9) 

Looking for a location to point D in order for DEF to be isosceles/equilateral/right/ acute/obtuse triangle 

2 (8). 5. Triangle inscribed in a circle 25(100) alternatives: (5.1)Triangle inscribed in a square25 

(100); (5.2) Square inscribed in a circle25 (100); (5.3) Rectangle inscribed in a circle22 (88); (5.4) 

Triangle inscribed in a quadrangle21 (84); (5.5) Triangle inscribed in a rectangle 16 (64); (5.6)Triangle 

inscribed in a trapezoid 14 (56); (5.7) Pentagon inscribed in a circle12 (48); (5.8) Triangle inscribed in a 

pentagon 9 (36); (5.9) Triangle inscribed in a polygon 4 (16); (5.10) Triangle inscribed in a sphere 2(8); 

(5.11) Triangle inscribed in a cube 2(8); (5.12) Triangle inscribed in a pyramid 2(8); (5.13) Triangle 

inscribed in any  spatial body 2(8). 6. Any triangle 18(72) alternatives: (6.1) Isosceles triangle 18 

(100); (6.2) Equilateral triangle 18 (100); (6.3) Right triangle 18 (100); (6.4) Acute triangle 9 (50); (6.5) 

Obtuse triangle 9 (50).7. Two segments are drawn from the point 11 (44) alternatives: (7.1) Three 

segments are drawn from the point 11 (100); (7.2) n segments are drawn from the point 2 (18.18). 8. 

The segments that are drawn from the point are perpendicular to the sides of the triangle 11 (44) 

alternatives: (8.1) The segments bisect the sides 11 (100); (8.2) The segments divide each side into n 

equal parts 2 (18.18). 9. Inscribed triangle 7 (28) alternatives: (9.1) Circumscribed triangle 7 (100). 10. 

Circumcircle 7 (28) alternatives: (10.1) Quadrangle inscribed in a triangle 7 (100); (10.2) Triangle 

inscribed in a triangle 3 (42.85). 11. Polygon 6 (24) alternatives: (11.1) Circle 6 (100); (11.2) Parabola 

1 (16.6) 

 

 
Figure 2: Attributes and alternatives suggested by the PT 
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Although Phases 2 and 3 appear to require merely a technical work, in order to 

perform it well, the PT had to demonstrate mathematical knowledge concerning the 

formal definitions and characteristics of the negated attributes. For example, only six 

PT related to the attribute “polygon”. This fact implies that most of the PT did not 

consider the formal definition of triangle, namely, “a 3-sided polygon”. Referring to 

this issue during the class discussion, we realized that the PT related primarily to the 

visual aspects of triangle and not to its definition. This finding is consistent with Tall 

& Vinner (1981) regarding concept image and concept definition, and with the 

prototype phenomenon described by Hershkowitz (1989). From the PT’s portfolios 

we realized that this phase enabled them to rethink geometrical objects, their 

definition and attributes. As can be seen from some of the PT’s reflections: Anna 

(end of Phase 2): “Analyzing the attributes helped me realize that there is much more 

in a problem then merely givens. Discussing each data component and its definition 

enables to rethink of definitions of mathematical objects and some interconnections 

between them”.  Roy (end of Phase 2): “The class discussion made me realize that 

there are so many attributes in one problem. Indeed I listed most of the attributes, but 

it is those which I didn’t list that made me appreciate the richness that one can find in 

any mathematical problem”.  

Phases 4. In this phase the PT had to concentrate on one of the alternatives, formulate 

a new problem, and solve it. Examination of the PT’s portfolios reveals that 16 PT 

(64%) chose to focus on alternatives to attribute no. 5 (among them 14 chose “square 

inscribed in a circle”), 4 PT (16%) chose to focus on alternatives to attribute no. 3 (2 

PT chose “two medians are drawn” and 2 chose “one height and one median are 

drawn”), 3 PT (12%) chose to focus on alternatives to attribute no. 7 (2 PT chose 

“Three segments are drawn from the point” and 1 on “n segments are drawn from the 

point”), 2 PT (8%) chose to focus on alternatives to attribute no. 4 (both replaced 

“maximum” by “minimum”). This finding implies that most of the PT chose as 

alternatives common geometrical objects, as square, median and height. Wondering 

why the PT demonstrated such a ‘conservatives’ behavior, we found the answer in 

their portfolios: Noa (beginning of phase 4): “At  the beginning Shir and I thought of 

choosing the alternative of triangle inscribed in a sphere [5.10], and later perhaps 

even a tetrahedron inscribed in a sphere. But then we realized that perhaps you 

expect us to prove what we are about to discover and whatever we will formulate as a 

conjecture. We were afraid that we will discover something that we will not be able 

to prove, and then all our efforts would be worthless”. From this excerpt it can be 

seen that teachers tend to overemphasize the importance of proof. As a result, the 

students feel insecure, and they do not dare to relate to mathematical inquiry as an 

‘adventurous’ process.  Rather, they tend to approach it in a hesitancy manner, 

believing that proof is the most important aspect of the mathematical doing. This 

attitude prevents the development of inquiry abilities. 

Additional aspects on which the PT reflected concerned the validity of an argument 

and the meaning of definition. Gil (during Phase 4): “At the beginning of the inquiry 

process we felt like we must first rethink of the mathematical meaning of the concepts 
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involved. We asked ourselves whether the new problem situation is mathematically 

valid and everything is well defined. The truth is that we had never done this before. 

We were used to solve problems given by our teachers or the textbooks. In these 

cases there was no need to check the validity of any argument or to probe into the 

definitions of the objects involved. It was certain that everything is valid, well defined 

and solvable“.  

To sum, reflective portfolios and class discussions turned out to be a useful tool for 

reflecting on processes, and tracing the PT’s development of mathematical 

knowledge. We found that involvement in PP has the potential to develop the 

mathematical knowledge, and consolidate basic concepts, as suggested by Brown & 

Walter (1993) and English (1996). This development of knowledge came to fruition 

especially in the ability to examine definitions and attributes of mathematical objects, 

connections among mathematical objects, the validity of an argument, and 

appreciation of the richness that underlines mathematical problems. However, one 

major weak point was discovered. The PT tended to attach to familiar objects, and 

were not ‘daring’. This tendency actually prohibits the development of problem 

solving skills and inquiry abilities instead of developing it. We found that this 

tendency can be explained by the redundant emphasize of the importance of 

providing formal proof. Teacher educators need to identify ways for reducing PT’s 

fears from handling formal proves, and remove the focus to the analysis of a given 

situation, connections among mathematical objects and looking for generalization. 

This, in turn will develop their problem solving skills and their insights as regards to 

mathematical objects.     
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ACTIVITY-BASED CLASS: DILEMMA AND COMPROMISE 

KyungHwa Lee  

Korea National University of Education  

Experiencing mathematics through activity rather than rote memory and repeated 

practice has been emphasized. Textbooks introduce a variety of activities that helps 

students understand mathematical knowledge. Teachers should understand the content 

of, and the idea behind, activities first and then make them play out vividly in the 

classroom. However, activities often distract students’ attention and divert the focus of 

the classes away from its original purposes. This paper aims to identify the dilemma 

and compromise of activity-based mathematics classes by examining the reflective 

review of a teacher on his classes about geometric figure movement and the discussion 

by three incumbent teachers on the classes. 

INTRODUCTION  

Korean mathematics curriculum puts an emphasis on activity-based mathematics 
classes (Ministry of Education, 1998). This is in line with research results claiming that 
activities, especially those based on manipulative material and technology facilitate 
mathematical learning (Thompson, 1994; Edwards, 1998). As Ball pointed out (1992), 
however, students don’t always go beyond activities themselves and learn what their 
teachers intend them to learn. Cobb et al. (1992) argue that when teachers and students 
use manipulative material, their communication tend to focus on interpretation of the 
newly introduced material, not mathematical knowledge. In activity-based 
mathematics classes, it is not always possible to gain knowledge from activities and 
there is a constant danger of interest shift to activities themselves in a significant way. 
Of course, proper communication on concrete materials may give students an 
opportunity to discover mathematics on their own. 

Dowling (1995) also argues that mathematics education as it is widely practiced is a 
mythologizing activity in the sense that it regards activities themselves as instances of, 
or representable by, mathematics. It is necessary to determine whether activities in 
class exactly represent mathematics or how distant they are from mathematics. The 
belief that activities alone will guide students towards mathematical knowledge is no 
longer sustainable. 

Activity-based mathematics class has been emphasized and implemented in Korea 
since the 1990s. Now, it is time to analyse a variety of activity-based classes and find a 
new direction. This research aims to analyse classes on geometric figure movement by 
focusing on a teacher’s analysis of activities in textbook, use of the activities in classes 
and students’ perspectives. It also takes a look at the discussion by incumbent teachers 
about the classes on geometric figure movement and the teacher’s reflective review. To 
achieve these objectives, this research was conducted focusing on the following two 
questions:  
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• What kind of use and understanding of textbook activities do teachers 
develop?  

• What kind of difficulties or dilemmas do teachers find in mathematics classes 
while using activities to teach mathematical knowledge and what compromise 
do they reach?   

THEORETICAL FRAMEWORK 

The content of the teacher’s analysis on textbook activities will be re-analysed in 
comparison with research results by Kang & Kilpatrick (1992), Dowling (2001) and 
Kulm et al. (2000). This research will identify how the teacher recognizes the changed 
nature of knowledge with the introduction of activities (Kang & Kilpatrick, 1992); how 
much he understands the goals and characteristics of activities in the textbook, and 
directness and indirectness of experience (Kulm et al., 2000); and whether he considers 
different interpretive frameworks between him and his students (Dowling, 2001).  

The didactic situation concept introduced by Brousseau (1997) consists of the learners, 
the teacher, the mathematical content and the culture of classes, as well as the social 
and institutional forces acting upon that situation, including government directives in 
the national curricula documents, inspection and testing regimes, parental and 
community pressures and so on. He also introduced didactic contract which is about a 
kind of pressure or tension existing between teacher and learners. It is very important 
to decide if teachers and students abide by this contract while teaching and learning. If 
a teacher doesn’t offer learners opportunities to explore mathematical knowledge, then 
he or she violates the didactic contract and that situation is not didactically appropriate 
Brousseau, 1997). This research examines what kinds of didactic situation and didactic 
contract do Korean elementary mathematics teachers seem to have. Use of activities in 
classes and students’ perspectives will be analysed by using didactic situation concept 
introduced by Brousseau (1997); the didactic pole and the cognitive pole coined by 
Bartolini Bussi et al. (2005); the didactic transposition by Chevallard (1985). 

METHOD 

To find out how a teacher understand textbook activities and use in his or her classes, 
this research was performed following the research method that intentionally conducts 
the sampling of proper cases, observes and makes an in-depth analysis (Strauss & 
Corbin, 1990). K, the teacher who participated in this research and provided materials 
and issues on activity-based mathematics classes, has been teaching for 12 years but is 
not confident in activity-based mathematics classes. He says he is increasingly less 
confident as greater emphasis has been put on activities in curricula and textbooks. 
According to his fellow teachers, however, K always spends significant amount of 
time and energy in preparing for his classes and materials for activities. He wanted to 
know whether he has the right understanding of activity-based mathematics classes 
and what a typical activity-based math classes that most teachers are able to implement 
would look like. The three incumbent teachers, C, L and P, discussed K’s classes from 
the viewpoint of potential and limitation of activity-based classes and tacit 
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compromise among teachers. They have taught for 3, 7 and 15 years respectively, 
covered chapters taught by K and are very active in reviewing research results at a 
variety of teachers’ study groups. 

This research focuses on six hours of classes on geometric figure movement. The 
classes, interviews with K before and after the classes and a discussion by C, L and P 
were all videotaped and analysed. In addition, curriculum guidelines on geometric 
figure movement, activity sheets prepared for classes; activity sheets filled in and 
submitted by students and questionnaires given to the students were collected. 

RESULTS AND DISCUSSION  

K decided that he needed to teach his students about parallel transposition, symmetric 
transposition and rotational displacement without using coordinate in a way that is 
easily understood by elementary school kids by the appropriate didactic transposition 
(Chevallard, 1985). He analysed the textbook, the teacher’s guide, and the curriculum 
documents to prepare lessons. 

K’s Analysis of Textbook and Reconstruction 

K determined he would use activities because he had to teach third graders parallel 
transposition, symmetric transposition and rotational displacement without the use of 
coordinate. He recognized that a certain change was attempted in textbook to make 
mathematical knowledge easily understandable by elementary school students as 
analysed by Kang & Kilpatrick (1992). 

For example, a current textbook presents an activity of turning 
the desk as illustrated in Figure 1. K pointed out the activity 
doesn’t represent rotational displacement in the mathematical 
sense. He also expressed his concern over the gap between 
textbook activities and mathematical knowledge they are 
supposed to represent cases of parallel transposition and 
symmetric transposition. K said none of the 11 textbook 
activities faithfully serves the original purpose and that he was 
worried about meta-cognitive shift as pointed by Kang & 
Kilpatrick (1992). 

K decided it was crucial to teach the basic concept of moving geometric figures 
through activities although he was aware of the gap between textbook activities and 
mathematical knowledge. He thought moving geometric figures directly and checking 
the result was very important in classes. K’s position could be interpreted as supporting 
textbooks that emphasize direct experience - one of the criteria suggested by Kulm et al 
(2000). He didn’t regard learning from illustration or demonstration by the teacher as 
activity-based mathematics education. This implies that he knows the characteristics of 
the knowledge to be taught, in particular the dependence between the mathematical 
objects which must be taken into account in the creation of the coherence in the content 

Figure 1 
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to be taught and recognizes some constraints in didactic transposition of the knowledge 
in geometric figure movement (Brousseau, 1997; Laborde, 1989; Chevallard, 1985).  

K often mentioned different interpretative frameworks between him and his students 
(Dowling, 2001). The current textbook encourages students to check the result of 
geometric figure movement by asking, “Has the geometric figure changed?” and this 
approach is perfectly reasonable from K’s perspective. However, K suspected his 
students would think that geometric figure movement and change in geometric figure 
are closely related and that the geometric figure has changed after movement, rather 
than remained the same. 

K pointed out that while it is good for textbooks to present activities, they fail to 
explain why students should be engaged in the activities. This is why he decided to 
mention the reasons for studying geometric figure movement at the beginning of his 
classes and to illustrate how geometric figure movement is used in real life with a 
variety of examples. These examples included photos of cultural properties and 
buildings, and design-related materials on the Web. 

Dilemma from simplified activities 

At the beginning of his first class, K showed his students different patterns collected 
from the Web, especially those depicting the same repeated geometric figure and asked 
“what they feel and whether they recognize order in beauty.” He presented Korean 
traditional designs in tile roof, the dancheong patterns on the edge of the eaves, the 
taegeuk pattern and so on (See Figure 2), and pointed out that the “beauty of orderly 
patterns” has long been the focus of attention. K also asked his students, “How do you 
think the original creators came up with the designs? What might they have done 
before completing the designs? For example, they might have started by drawing 
something first on a piece of paper.” 

 

 

 

 

Figure 2: Pictures shown on the screen (Dancheong and Taegeuk) 

Then, K asked his students to think about the learning points of the chapter on 
geometric figure movement and the meaning of the word movement, and told them 
about how the knowledge in the chapter is applied such as in making wall papers and 
floor materials and designing scarfs and clothes. After that, he projected examples of 
geometric figure movement on a screen. With the screen showing activities in textbook, 
K had his pupils check whether the shape of the geometric figure on the screen changes 
when it is moved in four different directions-upward, downward, left and right. K then 
handed out a piece of paper with a geometric figure drawn on it to each of his students 
and asked them to move the geometric figure in four different directions and determine 
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whether the shape of the geometric figure changes. This was when an interesting 
debate took place between two kids at the back of the classroom. 

Student 1:  (She moves the geometric figure diagonally.) This is also geometric figure 
movement, right? 

Student 2:  No, you can only move it upward, downward, left and right.  

Student 1:  No, I don’t think so. It is just that the textbook shows only four ways of 
moving the geometric figure. Let’s ask him. (In a loud voice) Mr. K, this is 
also geometric figure movement, isn’t it? 

K:  Huh? Did you move it to the right? 

Student 1:  No, to the upper right. 

K:  To the right? 

Student 1:  Not just to the right. I move it to the right and also upward. 

K:  (He approaches to Student 1.) What do you mean by that? (He looks the 
student’s action.) Yes, that is also geometric figure movement in 
reality….(After a pause), but you need to choose between right and upward 
in this mathematics class. (After a pause) OK, has the geometric figure 
changed or not after being moved? 

Student:  It hasn’t. 

K:   Then it’s OK. It’s alright as long as you understand that the shape of the 
geometric figure has not changed after movement.  

The current textbook does not clearly explain what movement means in the 
mathematical sense. It only focuses on geometric figures not changing after being 
moved upward, downward, left and right and doesn’t specify how much and in what 
direction the geometric figures should be moved. It is a simplified form of knowledge 
in geometric figure movement so that teachers hardly find appropriate further 
explanation to add.  

K didn’t seem to control the situation in the above dialogue and almost gave up 
teaching about the reason why the word movement is interpreted in that way, which 
can be interpreted as the situation closes to a-didactical one in the sense that K 
transmitted the responsibility of handling knowledge to the learners (Brousseau, 1997). 
C, one of the discussants, recalled a day when he taught in a second grade class while 
analysing this episode. When he asked, “What has changed after we placed a geometric 
figure we drew on the windowpane and open the window?” a student answered, “It is 
cooler because of the breeze coming in.” This episode shows the students didn’t 
understand the intention of the question and the activity. In K’s classes, the definition 
of the geometric figure movement activity was changed by the students’ knowledge 
and experiences regarding the linguistic meaning of movement (Bartolini Bussi et al., 
2005).  

Dilemma from the distance between mathematics and activities 

K decided it was important to draw the result of geometric figure movement on section 
paper. The textbook has students transfer a geometric figure to transparent paper, place 
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the transparent paper on section paper and transfer the geometric figure again by 
plotting points. K thought this process of transfer to transparent paper and re-transfer to 
section paper would have no meaning to his students since it doesn’t give any insights 
into the underlying mathematics. So he changed the activity to drawing the moved 
geometric figure without transparent paper while stressing the concept of basis line. At 
first, K explained by using transparent paper but introduced the basis line concept. 

K:   What do we need to draw a moved geometric figure? 

Students:  A triangle. 

K:   No, I mean what we need to know before movement. A basis line, right? 
(He shows the basis line on the screen.) Then the only thing we need to 
consider is the number of squares located between the basis line and the 
figure. How do we do it? (Projecting the picture on the screen) Take a look 
at this geometric figure. As I mentioned, this line serves as the basis. Look 
at the line. How do we draw the moved geometric figure here? Think of it 
as being reflected in the mirror. We should leave one column blank on each 
side and draw the geometric figure by using one, two, three rows to make it 
the same as the one on the opposite side. Do you see how important a basis 
is now? 

K tried to make his students understand axis of symmetry to a certain degree by 
introducing the basis concept that is never mentioned in the textbook. When he 
explained about symmetric transposition, K only turned around section paper in the air. 
However, he deliberately used material with a basis marked on it to show his students 
how to describe the result of geometric figure movement. This is a didactic device for 
using textbook activity as the first artifact and utilizing language and picture to move 
toward the second artefact (Bartolini Bussi et al., 2005).  

K emphasized on the procedural knowledge of describing the result of textbook 
activities mathematically, whereas textbook focuses on the procedural knowledge of 
describing the activities in terms of the use of concrete materials including transparent 
paper. Thus his students participated in the different activities under K’s direction. In 
the discussion on K’s classes, L and P said that K was, in a way, teaching a fixed scope 
of mathematical knowledge when using activities. This, they concluded, prevented a 
variety of approaches from taking place while making his classes stable and poised 
despite the use of activities. 

Dilemma from visual representation of activity 

The chapter on rotational displacement in the textbook did not specify rotation angle 
like 90° or 180°. Instead, it depicted the degree of the rotation on a round-shaped figure. 
K explained in detail how to describe this depiction. 

K:   Do you see the clock-like thing in the middle? What time is it? I mean, it is 
not a real clock, but it looks like 3 o’clock, right? To 3 o’clock, until it 
reaches 3 o’clock. No, not 3 o’clock, but the angle that represents 3 o’clock. 
You know what a right angle is, don’t you? Three o’clock is a right angle, 
right? 

Students:  Yes. 
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K:   As much as the right angle to the right. That is… (demonstrating a rotation) 
to move, no, to rotate up to this point until it forms a right angle. How many 
times has a rotation been done to the right? Let’s call it a half of the half 
rotation from now on. 

K believes in socio-cultural perspective in mathematics learning (Cobb et al., 1992). 
However according to his analysis, the textbook didn’t offer him suitable tools to 
communicate with students on how much figure is rotated. When he decided that the 
visual depiction in the textbook was not enough for proper communication, K 
developed a linguistic depiction such as a half of the half and taught it to his students. 
They practiced and internalized the expressions presented by K and put them together 
to form mathematical knowledge.  

In K’s classes, the students thought and learned based not on visual depiction in the 
textbook, but on additional expressions that K created. There were few instances where 
a student devised a new expression or depended on his/her own interpretation during 
activities. C, a discussant, argued K deprived his students of an opportunity to express 
and internalize their own thought processes while P said that the activities were 
implemented in a significant way because K skilfully distinguished different and 
confusing concepts, which can cause so called Topaz Effect (Brousseau, 1997). 
Interviews with the students found they clearly remembered detailed guidelines that K 
presented and saw the guidelines as important. This gave an impression that the 
activities were regarded somewhat as an established piece of knowledge. 

CONCLUSION 

Activities implemented by K were not identical to those in the textbook by his own 
didactic transposition (Chevallard, 1985). After his classes was over, K said, “I agree 
with the idea behind activity-based mathematics classes but believe we should guard 
against a situation where students engage in activities without much thought. If 
detailed procedures are not presented, students will be lost in activities without gaining 
mathematical knowledge. The teachers who participated in the discussion also share a 
view that “focusing on the activities themselves weakens attainment of mathematical 
knowledge and vice versa.” This is the dilemma of activity-based mathematics classes 
recognised by K, which represents the gap between the knowledge to be taught and the 
knowledge taught (Chevallard, 1985).  

As K did, many Korean mathematics teachers reconstruct textbook activities into 
different detailed activities and ensure that the approaches taken by students are not 
overly varied. C described this as an indispensable approach because they often find 
dilemmas in their activity-based classes. P expressed this as a compromise shared 
among teachers. K argued that it is necessary for teachers to discuss on the dilemmas 
and the compromise by themselves since teachers have a very different view of the 
uses and purposes of activity. Activities are essential in teaching mathematics, but their 
effective use is not always straightforward and they can work against the didactic 
intent. Identifying dilemmas and compromise in activity-based classes recognised by 
teachers can be a significant way of professional development in teacher education and 
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bridging the gap between the theoretical and the empirical approaches in mathematics 
education.  
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and  SangHun Song*** 

*Korea National University of Education / **Cheongju National University of 

Education / ***Gyeongin National University of Education     

 

Mathematical thinking that advances into generalization through induction, analogy 

and imagery is an important tool with which mathematicians find mathematical 

principles. Mathematically gifted students, also, need to experience this thinking 

process. This research is focused on followings: how mathematically gifted 6
th
 and 8

th
 

grade students utilize induction, analogy and imagery in their geometric reasoning; 

how the problems that were developed to give impetus to the diverse thinking of 

students are solved using what strategy of the gifted students in actuality; and whether 

they are solved through the thinking types and paths predicted by the researchers 

through thought experiment are observed.   

INTRODUCTION 

According to the studies that observed and analysed the thinking characteristics of 

mathematically gifted students (Heid, 1983; Presmeg, 1986; Sriraman, 2003, 2004; 

Lee, 2005), mathematically gifted students efficiently utilize the problem-solving 

strategies including generalization, simplification, visualization as necessity arise,  

grasp the meaning and structure of a problem in a very short time and solve it 

progressively. Sriraman (2003) reported that gifted students invest considerable time 

in understanding the meaning and condition of a problem and their thinking behaviour 

including creative problem solving, generalization, formalization, etc. correspond to 

those of mathematicians. Lee (2005) found that gifted students have the tendency to 

advance into the higher-level reasoning through the reflective thinking about their 

early reasoning. 

Polya (1954, 1962) emphasized induction and analogy as very important mathematical 

reasoning faculties. A study on the meaning and development of induction (Holland et 

al., 1986) and those on the meaning and development of analogical reasoning (English, 

1997; Alaxander et al., 1997), show how much important elements induction and 

analogy are in the development of logical thinking. Studies have been made also on the 

important role of the mathematical imagery in mathematical learning (Wheatley, 1991; 

1997; Presmeg, 1992). Apparently, induction, analogy and imagery seem to be great 

tools that make one feel the beauty and strength of mathematical thinking. However, 

studies into which tasks and which teaching methods can stimulate such reasoning and 
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those into in what way mathematically gifted students combine or uniquely utilize 

those reasoning elements are insufficient. The objective of this research is to obtain 

detailed information on the way mathematically gifted students utilize induction, 

analogy and imagery in their geometric reasoning. To achieve this objective, this 

research was conducted focusing on the following two questions:  

• How do the mathematically gifted students utilize induction, analogy and 

imagery in their task solving process? 

• What role do induction, analogy and imagery play in making mathematical 

discoveries? 

THEORETICAL FRAMEWORK 

Polya (1954, 1962) insisted that exploration into a polyhedron can be made briskly 

through induction by suggesting the question, “Is it generally true that the number of 

faces increases when the number of vertices increases?” In this research, too, to induce 

the students to try generalization through induction, a question of the similar structure 

will be used while teaching.   

As assumed in the experiment of Alaxander et al. (1997), students might fail to utilize 

analogy in a desirable way as they pay attention to surface-level similarities. The task 

used in this research needs relational or structural analogy; so it is expected that 

students might pay attention to surface-level similarities even though the students were 

identified as gifted in mathematics. If so, we will closely observe in what type of 

similarity they take notice of and what role induction and imagery play at those times.    

Presmeg (1992) argued that image exists in diverse forms including concrete, dynamic, 

pattern, abstract, etc., playing diverse roles. In this research, also, in anticipation that 

students will form diverse shapes of image in accordance with individual experience, 

habit and preceding knowledge, will look into how they are utilized in problem solving, 

particularly in the discovery of mathematical idea.       

The results of the studies on induction, those on analogy and those on imagery 

(Holland et al., 1986; English, 1997; Wheatley, 1991; 1997) suggested specific process 

of mathematical thinking a learner might experience. In this research, based on the 

results of preceding studies, attention will be paid more to the relations between the 

three thinking elements.  

RESEARCH METHOD 

Participants 

To find out how mathematically gifted students utilize induction, analogy and imagery, 

this research was performed following the research method that intentionally conducts 

the sampling of proper cases, observes and makes an in-depth analysis (Strauss & 

Corbin, 1990). The subjects of this research are three 6
th
 graders (age 12) (E1, E2, E3) 

in elementary school, three 8
th
 graders (age 14) (M1, M2, M3) – all of them are 

receiving education for the gifted in an academy for the gifted attached to a university.  
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Tasks 

The tasks were prepared by the researchers either by reviewing, of the existing studies 

on the fields of geometry, algebra, probability and statistics, those that paid attention to 

the improvement of mathematical thinking ability and then partially revising them or 

through new development. Teaching materials with which a polyhedron can be easily 

made were provided for the subjects to use in the task-solving process. The tasks that 

will be mainly analysed in this paper fall under the field of geometry and are as 

follows:  

• [Task 1] The sum of all the interior angles of a triangle is 180°. Can you find 

a similar property in a tetrahedron? Make tetrahedrons with the tools in front 

of you as needed; observe them; and find the similar statement or property.   

• [Task 2] As to a solid that has n-number of faces, can the sum of the internal 

angles of the polygons that compose each face be generally worked out? Why 

do you think so?  

Both the two tasks were developed for the objective of making students discover 

mathematical ideas and justify them using induction and analogy. The intention was to 

make them experience induction and analogy while solving task 1, and apply the 

experience to solving task 2. So task 1 was provided with a view to have the students 

learn the thinking pattern required to solve task 2. In the case of imagery, since it is 

hard to make specific anticipation about it in advance, it will be arranged by classifying 

the students’ responses.   

Procedures 

Nine units in three education programs for each field of geometry, algebra, probability 

and statistics were provided to them. Elementary school students and middle school 

students participated in the research being separated from each other; and for each 

student one research assistant was assigned to conduct concentrative observation and 

interview. Each teaching unit program lasted for three hours; all the responses of the 

students were audio-/video-taped; and background information including their activity 

record, home background, etc. was also collected.        

Considering that the students’ mathematical thinking cannot be completely expressed 

in language, data was analysed taking heed of such non-linguistic responses as facial 

expression, behaviour, etc. The interaction between the students was allowed only if 

necessary: the students were to solve most of the tasks in accordance with the 

individual habit or strategy. Their thinking characteristics were analysed inductively 

focused on the scene where induction, analogy and imagery are specifically linked to 

problem solving, particularly on how the three kinds of reasoning are linked to each 

other.  

RESULTS  

The mathematically gifted students were identified as very promising in mathematics 

by the selection process run by the university professors of the gifted centre. However 
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their performance in this study was not so good unlike the researchers’ expectation 

which proposed the changes in the selection process. In the participants’ geometrical 

reasoning, how induction, analogy, and imagery were revealed and connected in some 

way is explained in the following table:   

Task E1 E2 E3 M1 M2 M3 

1 

Imagery 

↓  

Analogy 

Induction Imaging Imaging Induction 

Imagery 

↓  

Analogy 

2 

Imagery 

↓  

Induction 

Imagery 

↓  

Induction 

Imagery 

↓  

Induction 

Analogy 

↓  

Induction 

Induction 

Induction 

↓  

Imagery 

↓  

Analogy 

Table 1: Emerged Reasoning Patterns 

In case of trying just induction without utilizing analogy and imagery, appropriate 

geometrical reasoning was not completed. As a result, the focus of the task was missed 

(M2). In spite of the fact that the task was asking for induction, a student who 

succeeded in analogy based on suitable imagery without using induction could resolve 

the task (E1, M3). Compared with elementary students, middle school students try not 

to reason based on imagery. When imagery is combined with induction or analogy, the 

conversion of thinking was realized rapidly. When induction and analogy was 

combined or at least utilized at the same time, inductive analogy and analogical 

induction were not found.  

Surface-level analogy and blind imaging 

Task 1 is making and observing various kinds of tetrahedron and to find out its specific 

features on the sum of some angles. In spite of the fact that the task was asking to 

observe various tetrahedrons, some students just made one tetrahedron and didn’t 

make other tetrahedrons any more. Focusing on just one tetrahedron, they changed the 

imagery about angle and tetrahedron. Based on such imagery, they tried to induce. The 

following is a part of conversation made between M1 and a researcher.  

M1: Here, this angle is made of three dimensions! 

Interviewer: (pointing at the angle of the picture drawn by M1) Are you talking about 
this interior angle?  

M1: (pointing at the angle of the tetrahedron she made) Yes, that angle made of 
three dimensions is what I am talking about. 

Interviewer: How do you know the degree of that angle? 

M1: That is the problem. I can’t find it. But I think someone can. 
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M1 didn’t care about the relation or structure in the given statement about the sum of 

interior angles of a triangle. She spent most of the time thinking how to measure an 

interior angle of a tetrahedron that she defined as the counterpart of an interior angle of 

a triangle.  The ‘three dimension angle’ within the tetrahedron is not approachable by 

the existing tetrahedron image that the student has. The student just noticed the new 

image form such as the angle that one edge meets another edge or one face meets 

another face. The image of angle is in the process of expanding from a plane figure to a 

solid figure but the student failed to exactly capture the meaning. She couldn’t explain 

why she had to know it. Also how the change of angle is connected to the kinds of 

tetrahedron was not clear to her.  

Surface-level analogy and blind induction 

E2 tried to observe and analogize various kinds of tetrahedron including regular 

tetrahedron according to the guidelines of task 1. However, he couldn’t find the 

common feature by noticing each character that various cases have. Away from the 

original point, ‘the sum of the interior angles’ that should be analogized, he showed 

interest in the changes of number such as an edge, a vertex, etc. So he failed to draw a 

meaningful conclusion on the sum of some angles, although he continuously tried 

induction of what he observed. In case of M2, he made various kinds of polyhedron to 

resolve task 2, but the analysis on such polyhedrons was not done systematically. So he 

couldn’t draw any conclusion.  

If induction for various kinds of tetrahedron and polyhedron is not combined with 

proper imageries, it can’t be connected to the proper reasoning, losing the direction. In 

other words, trying induction without direction strays from the essential.  

Relational analogy fuelled by proper imagery 

Student E1 also focused on the triangle of each face after making just one regular 

tetrahedron using the teaching manipulative while resolving task 1. He also didn’t 

show any interests in making various kinds of tetrahedron. However the proper 

imagery he developed led to analogy. The following is a part of conversation made 

between E1 and a researcher.  

E1: A regular tetrahedron has 4 regular triangles. So the sum of angles times 4 
is 720. 

Interviewer: What about a general tetrahedron? 

E1: A tetrahedron may have a triangle and a quadrangle.  

Interviewer: A triangle and a quadrangle? 

(After a long pause for imaging the development figure of a tetrahedron)  

E1: No, no. A quadrangle can’t be fit in. If a quadrangle enters, there are not 
enough edges. We need more edges to connect this part (draw some figures 
in the air). If you connect one, it already becomes 5. 

The above conversation shows that the student doesn’t make other kind of tetrahedron 

and imagine the scene making any tetrahedron to resolve the task. Especially to explain 
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each face of the optional tetrahedron is a triangle, he suggested a reasonable logic by 

imaging the solid figure and the development figure of it in his thought including a 

quadrangle without using induction.  Unlike M1, E1 is focusing on each face’s polygon 

rather than an interior angle. This means that the development figure of the tetrahedron 

is being used as an image.  

The crucial meaning included in the first statement of task 1 is that the interior angles 

of a triangle can be different, but the total of three angles is consistent. By relational or 

structural analogy, he discovered the fact that the kinds of triangle compose the 

tetrahedron can be changed, but with only 4 triangles one can compose any tetrahedron. 

He exactly analogized with not just isolated element about an interior angle itself but 

the relation or structure included in the statement. Based on such relational or 

structural analogy, he resolved the task. The development figure and the shape of each 

face in tetrahedron seem to play a key role in the relational analogy.   

Relational analogy fuelled by essential induction and proper imagery  

M3 also didn’t feel any necessity to check various kinds of tetrahedron when he 

resolved task 1. Like E1, he analogized the character of the tetrahedron, using the 

development figure in a tetrahedron.  As for task 2, he observed various kinds of 

polyhedron. He suggested an example that although the number of face is the same, the 

sum of interior angles in a polyhedron can be different. At this point, he noticed a 

quadrangular pyramid and a triangular prism with 5 faces. And then he checked 

whether he could get the general features of each pyramid and prism. He checked that 

the number of vertexes and faces in the n-pyramid is n+1. Also he checked that the 

number of vertexes in n-prism is 2n and the number of faces in n-prism is n+2.  For 

each case, he found the formula to get the sum of interior angles of a polygon in each 

face.  

The development figure which was utilized in resolving task 1 played a key role in 

advancing into the analogy from induction upon various polyhedrons for M3 to resolve 

task 2. M3 drew the development figure of any polyhedron and focused on each plane 

figure that composes the development figure. He made efforts to get the formula to 

total the interior angles of a polygon in each face. He analogized the changes of each 

face by disassembling special cases including a regular polyhedron, a triangular prism, 

etc., with the development figure and each plane figure. The following is a part of 

conversation made between M3 and a researcher.  

M3: Let me explain it with a regular tetrahedron. The total edges are 6. We have 
to get the angle of each face. So if we separate each face, we get 4 triangles. 
There are 12 edges, so it’s two times of the total edges. The total of the 
interior angles of each face is n-2 times π , so if we put the number of edges 
as n. 

Interviewer: Do you put the number of edges as n? Why do you think about the number 
of edges? 

M3: Imagine that we remove all the faces. 

(He tries to draw the process of dismantling faces in the air.) 
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M3: Then the number of edges doubles because we remove faces from here and 
there.   

M3 found out that if we dismantle an ordinary polyhedron by polygon, the total of the 

interior angles for each polygon located in each face can be calculated. Also he found 

out that it can be expressed as one formula by connecting the total number of faces and 

edges. Analogizing from task 1 and systematically inducting and utilizing imagery 

properly played the key role in resolving the task 2.  

DISCUSSION AND CONCLUSION  

The suggestion of Polya (1954, 1962) is that the character of a solid figure can be found 

by analogizing the character of a plane figure and reach to the generalization by 

induction. After applying this suggestion to the mathematically gifted students, only 2 

among 6 students showed the expected response (E1, M3). Some students spent most 

of the time finding out the meaning of the interior angle of a tetrahedron (M1), or just 

observing various cases without a system (E2, M2). Those students couldn’t draw out 

any new character about a solid figure. Without relying on induction, rather than trying 

the deep analysis on some example or trying the inference based on image reached the 

successful analogy (E1, M3). Especially changing the imagery dynamically and 

utilizing it in induction and analogy played a key role in discovering the mathematical 

idea and its generalization (M3). In the study of Alaxander et al.(1997), many students 

could utilize analogy by choosing a very similar calculation question in terms of 

structure.  However, this study tried the analogy between very different structures such 

as a solid figure and a plane figure, which made even the mathematically gifted 

students get lost in analogy. Thus more experience of tackling this kind of tasks is 

suggested to be introduced in gifted education.  

Imagery seems to provide a very important base for developing structural analogy to 

resolve the tasks in geometry. Because the structure among objects should be grasped 

to enable analogy, so some specific imagery among various features of geometric 

objects plays a key role. Activities with imagery, such as drawing, writing down, or 

describing verbally the spatial imageries students used when solving tasks (Wheatley, 

1991) also needs to be heavily considered in gifted education.  

Induction itself seemed to be difficult to be utilized properly to resolve the tasks in this 

study. E2 and M2 tried to find many cases, but they had difficulties in generalizing the 

results. They couldn’t grasp the relation between the objects that observed. Just 

drawing out the isolated features, they couldn’t systemize them and utilize the image. 

As a result, they couldn’t draw a desirable induction or analogy. Like the preceding 

studies on the role of image (Wheatley, 1997; Presmeg, 1992), some students in this 

study utilized or changed existing images to utilize or apply induction or analogy. 

However many students are needed to develop tendency or ability to use imageries.  

The relation between induction and analogy is not clear. We predicted that induction 

about many cases could be the base of analogy, but in reality, the deep analysis on one 

case developed a strong tendency to lead to analogy in this research. There was a case 
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that tried to start from analogy and reach induction (M2), but the student failed in 

resolving the task because his analogy and induction were both incomplete. Induction 

can be the first tool when solving geometric problems, but it needs other reasoning 

skills such as analogy or imaging simultaneously. If we analyse the responses of 

students about algebra, probability and statistics, the relation among induction, 

analogy and imagery will be clearer.  
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This study was conducted with the focus on the process of constructing a definition and 

produced definitions rather than gifted students’ conceptions of a mathematical 

definition. Accordingly, instead of a mathematical subject that students would come 

into contact with as part of the curriculum or in their ordinary lives, this study used 

regular polyhedron as its subject matter which students are not familiar with even if 

they may have encountered it in their ordinary lives. In this study, students were asked 

to make platonic polyhedra, observe them and then construct a definition of regular 

polyhedron based on their observations. We sought to gain various suggestions 

through the analysis of the observations and definition laid down by the students and 

through the characteristics shown by the students in the process of defining the 

concept. 

INTRODUCTION 

There have been many different opinions regarding the definition of giftedness and 

gifted children and many scholars have had different perspectives about them, as the 

criteria for giftedness and gifted children have differed with the changes in the times, 

cultural and social values (Song, 1998). For the purpose of this study, gifted children 

are restrictively defined as children who was selected as a gifted children by experts of 

institute for science gifted education supported by the government. 

Up until now, studies on characteristics on the way of thinking of mathematically 

gifted students have focused on generalization, abstraction, justification, reasoning 

ability, etc. that are at play during the process of problem-solving and proving 

(Krutetskii, 1976; Lee, 2005; Sriraman, 2003; 2004).  

Definition accounts for the important part of mathematics and mathematics education 

(Harel, Selden, & Selden, 2006; Ouvrier-Buffet, 2002; Shir & Zaslavsky, 2001) and 

the significant roles that definition plays in grasping mathematical concepts, solving 

problems and proving have been emphasized by numerous researchers (Shir & 

Zaslavsky, 2002; Skemp, 1971; Vinner, 1991). In mathematical learning, construction 

of definition rather than the provision of constructed definition is regarded as 
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important as problem solving, guessing, generalization, and proving (De Villiers, 

1998; Mariotti & Fischbein, 1997; Ouvrier-Buffet, 2004; 2006). 

This study seeks to deal with another aspect of mathematically gifted students by 

analysing the characteristics displayed by students in the process of making five types 

of regular polyhedra, observing them and constructing the definition of a regular 

polyhedron. This study is also intended to give some suggestions as to the selection of 

mathematically gifted students and the curriculum for their education. 

BACKGROUND 

Kang & Cho (2002) have identified 5 definition-methods that are used in the geometry 

of school mathematics - synonymous, denotative, implicative, constructive, analytic.  

And they categorized them into practical and scientific methods. The former 3 

definition-methods are classified as practical whereas the latter 2 definition-methods 

are classified as scientific. In making definitions, practical methods select directly 

perceived attributes and directly useful characteristics while scientific methods select 

‘causality’, ‘generation’ or ‘relationship,’ which show how things are mutually 

dependent on one another and how they interact mutually. Accordingly, the latter 

methods enable us to identify connectivity between the discrete pieces of information. 

In this study, we used Kang & Cho (2002)’s study to examine whether students 

depended on directly perceived attributes or took notice of the relationship between the 

components that make up a regular polyhedron. 

Fischbein (1987) claimed that examples play a core role in intellectual activities and 

emphasized the importance of denotative method. According to him, ‘paradigmatic 

model’ is basically an example but is beyond a mere example. An example of a concept 

refers to the object that carries all the attributes of the concept. Example as 

paradigmatic model not only carries all the attributes of a concept but also plays a core 

role in intellectual activities. Skemp (1971) attached a particular significance to 

conceptual learning as it lays foundation for higher level of mathematical principles 

and problem solving. According to him, the best way to administer conceptual learning 

in mathematics is through inductive reasoning whereby proper examples related to the 

concept at hand are presented to help students identify commonalities of the examples 

and construct the concept from the commonalities. This study is based on Fischbein 

(1987) and Skemp (1971) and determines that platonic polyhedra give a proper 

situation for constructing the definition of a regular polyhedron. 

In this study, students participating in this experiment were asked to make platonic 

polyhedra using materials (Znodome system), observe them, and construct a definition 

of each regular polyhedron based on their observations. That is, they were asked 

construct a definition through inductive reasoning using examples.  

Abstracting is one of the most important things and generalizing and synthesizing form 

a prerequisite basis to abstracting. Generalization is to derive or induce from 

particulars, to expand familiar processes, and abstracting is constructive process 

building mental structures from properties of and relationships between mathematical 
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objects (Dreyfus, 1991). According to Dreyfus (1991), this process depends on the 

isolation of proper properties and relationships. Such constructive mental activity on 

the part of a student depends on the student’s attention being focused on those 

structures which are to form part of the abstract concept and drawn away from those 

which are not relevant in the intended context. Synthesizing means to combine or 

compose parts in such a way that they form a whole, an entity. Unrelated facts 

hopefully merge into a single picture, within which they are all composed and 

interrelated. This process of merging into a single picture is a synthesis.  

METHODOLOGY   

Participants 

Participants in this study are 21 intellectually gifted elementary school students in the 

5
th
 grade (11 years old) - 14 boys and 7 girls - who are being instructed under the 

program of institute for science gifted education attached to a National University and   

supported by Korean government. But they had no This institute selects gifted students 

through 3-stage steps : (1)  Recommendation by a principal, (2) Testing of students by 

experts on high level of mathematics problem solving, and (3) Testing of students by 

experts on abilities on a solve problems requiring ingenuity. The students in this 

institute educated 60 hours in science and 42-hours in mathematics for one year. Math 

programs, which are 3-hour long each, deal with various fields such as algebra, 

geometry, probability, etc. with the focus on improving students’ abilities on 

problem-solving, reasoning, and justification. We have confirmed that these students 

did not experience any class previously on how to construct definition on a certain 

concept through the regular curriculum of education either at their schools or at the 

institute.     

Activities 

The teaching experiment designed for this study was part of the regular curriculum of 

this institute and was administered to the students for three hours on end after dividing 

the students into 3 groups. The experiment consisted of 4 steps and the details on these 

steps are as follows.  

Step 1: Making regular polyhedra (in group). For starters, pictures of platonic 

polyhedra were presented to the students. Each group was asked to make the regular 

polyhedra using the materials based on these pictures.  

Step 2: Observing regular polyhedra (in individual). Students were asked to 

observe the regular polyhedra that their group had made and record their observations 

(characteristics, attributes, etc.) about each type of regular polyhedron in the activity 

sheet. They were asked to record as many observations as possible and a mutual 

discussion within each group was permitted. 

Step 3: Defining regular polyhedra (in individual) Students were asked to construct 

a definition and record it on the activity sheet based on the observations they have 

made in step 2. 
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Step 4: Further develop their definition (in group) Students of each group engaged 

in a group discussion to refine the definition of regular polyhedron constructed by 

individual members of each group in step 3.   

RESULTS  

In this study, analysis was conducted with the focus on step 2 and 3. The main data to 

analysis was the activity sheet that students prepared and one-on-one interviews were 

conducted in case the need arose to clarify certain terms and expressions used by 

students. The discussions in this study were not classified and organized by a 

conventional framework but, rather, are the results that were derived through an 

inductive method based on the responses of the students (Denzin & Lincoln, 1994; 

Goetz & LeCompte, 1984).  

According to analysis results, students were categorized into three groups based on the 

relationship between the responses of students in step 2 of observing five platonic 

polyhedra and recording their observations and the responses of students in step 3 of 

defining a regular polyhedron based on these observations. Part of the responses shown 

by students of each group is as follows: 

The critical components of the figures by students 

in step 2 
Group 

(sample 

students) 
Regular 

4-hedron 

Regular 

6-hedron 

Regular  

8-hedron  

Regular 

12-hedron  

Regular 

20-hedron  

The definitions by 

students in step 3 

S1 

The shape of face. The number of vertex and edge. A regular polyhedron 
has the same area of 
faces and the same 
length of sides. The 
angles formed by 
adjacent edges are the 
same. 

G

r

o

u

p

1 

S2 

The length and number of edge. The angle 
formed by adjacent edges. The number of 

vertex. The shape and number of face. 

A regular polyhedron 
has sides of the same 
length, angles of the 
same size and faces of 
the same area. 

G

r

o

u

p

2 

S3 

The length and number of edge. The number of 

vertex and face. V+F-E=2. 

A regular polyhedron 
is a solid that has edges 
of the same length and 
faces of the same area.  
V-E+F=2. The numbers 
of edges, vertices and 
faces are all even. 
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G

r

o

u

p

3 

S4 

The 

number of 

face and 

diagonal. 

The 

number 

and shape 

of face. 

The 

number of 

vertex.  

Making 

method. 

The 

number 

and shape 

of face. 

Looks like 

a top. 

The 

number 

and shape 

of face. 

The 

number of 

vertex. 

The 

number of 

vertex to 

meet on 

each 

vertex. 

Making 

method. It 

has many 

edges and 

skewed 

parts. 

It should have faces. 
The numbers of 
vertices are four, eight 
and twelve. That is, the 
numbers are 
multiplied by 2. The 
numbers of the edges 
are multiples of six. It 
should consist of plane 
figures.  

Table 1: The critical components of the figures & definitions by students 

[On group 1] Students in Group 1 constructed a definition that is logically congruent 

with the mathematical definition. Not only they took notice of the critical components 

but also the components observed were consistent in observing the characteristics of 

each regular polyhedron in step 2. For examples, student 1 recorded their observations 

with a consistent focus on the number of edges and vertices, the shape and number of 

faces that make up the regular polyhedra while student 2 recorded his observations 

with a focus on the size of angles formed by two adjacent edges, area of faces, the 

number of vertices and edges, and the number and shape of faces.   

Definition by student 1 satisfies the mathematical definition of a regular polyhedron, 

“A regular polyhedron is composed of congruent regular polygons”. The statement that 

“All the faces are the same area while all the edges are the same length” means that all 

the plane figures that make up a regular polyhedron are congruent. An addition of the 

statement that “the angles of the adjacent edges are the same” indicates that all the 

plane figures are congruent regular polygons. Though this definition an enumeration of 

the factual observations that represent the characteristics of regular polyhedra, this 

satisfies the mathematical definition of a regular polyhedron. That is, they tried to 

present sufficient conditions that are needed to make a mathematical definition. The 

definitions of student 2 also satisfy the mathematical definition of a regular 

polyhedron. 

It was confirmed, through student 1 and 2 that students in group 1 grasped the 

relationship between the components that make up a regular polyhedron in observing 

five types of regular polyhedra, and they perceived regular polyhedra’ structures so 

that recognized the fundamental attributes of regular polyhedron. They recognized the 

critical components that make up a regular polyhedron and defined with the 

relationship between the components. In addition, in defining a regular polyhedron, 

student 1 recognized the fact- angles formed by two adjacent edges are the same size - 

that were not expressed in step 2, and used the fact to define a regular polyhedron. It 
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shows that the student recognized the relationship between the components that make 

up a regular polyhedron and the fundamental attributes. 

[On group 2] Students in Group 2 constructed a imperfect definition. They took notice 

of the critical components and the components observed were consistent in observing 

the characteristics of each regular polyhedron as the students from Group 1 did. Foe 

example, student  3 observed the regular polyhedra with a consistent focus on lengths 

of sides, number of vertices, number of faces and edges, the relationship (vertices + 

faces –edges = 2) between the numbers of vertices, faces and edges. Even though the 

definition of student 3 used the results of observations appropriately, it simply 

enumerates observations in a superficial fashion while failing to identify the 

relationship between the components that make up a regular polyhedron. Thus, this 

definition includes part of Catalan polyhedron in addition to a regular polyhedron.  

[On group 3]  Students in Group 3 had difficulty defining a regular polyhedron. 

Student 4 was not able to put a consistent focus when observing platonic polyhedra in 

step 2. That is, he was not taking a systematic approach. Though student 4 observes 

regular polyhedra with a focus on number and shapes of faces, number of vertices, 

number of edges that meet on a vertex, number of diagonals, how to make regular 

polyhedra using materials and overall shape, etc., the student’s focus changes 

depending on the type of the regular polyhedron - number of faces and diagonals in the 

case of a regular tetrahedron and number & shape of faces and number of vertices in 

the case of a regular hexahedron. Accordingly, this student presents the number of 

components instead of defining a regular polyhedron by identifying the relationship 

between the components that make up a regular polyhedron.   

CONCLUSION  

According to the studies of Shir & Zaslavsky (2002) and Zaslavsky & Shir (2005), 

students showed a tendency not to adopt the definition that uses something other than 

critical components that make up the figure (faces, edges and vertices in the case of a 

regular polyhedron). However, students of Group 1 voluntarily used things other than 

critical components of a regular polyhedron to construct definition. It shows that 

students recognized the relationship between the components that make up a regular 

polyhedron and the fundamental attributes. Students of Group 1 could not only 

generalize and synthesize the facts that were observed through platonic polyhedra  but 

also abstract a regular polyhedron by grasping the relationship between the 

components that make up a regular polyhedron and capturing the critical 

characteristics of a regular polyhedron. Thus they were able to construct a definition 

that is logically congruent with the mathematical definition. 

Students from Group 2 succeeded in generalizing the facts that were observed through 

platonic polyhedra but they failed to synthesize the facts that were observed and 

abstract a regular polyhedron by capturing the critical characteristics of a regular 

polyhedron so that they were not able to construct a complete definition. Kang & Cho 

(2002) argued that for a learner to be able to define things through examples, 
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attentiveness and comprehensive faculty are prerequisites and Dreyfus (1991) said that 

abstracting is possible when the student’s attention is focused on those structures 

which are to form part of the abstract concept, and drawn away from those which are 

not relevant in the intended context.  In constructing definition of a regular polyhedron, 

students of Group 2 seems to be lacking in understanding needed to recognize the 

relationship between the components and in attentiveness needed to distinguish 

between different types of polyhedra. 

According to the study of Mariotti & Fischbein (1997), students who tend to view 

geometrical figure as visual gestalts have a tendency to rely on unnecessary 

characteristics while overlooking decisive characteristics of the figure. Students from 

Group 3 had difficulty defining definition of a regular polyhedron as they failed to 

generalize and overlooked important characteristics by perceiving the solids as visual 

gestalts only. 

It was confirmed, through students in Group 1, defining a mathematical concept was a 

useful activity through which the abilities of generalization, synthesizing and 

abstraction that are characteristics of gifted students as confirmed by various studies 

(Krutetskii, 1976; Sriraman, 2003) could be verified and participating students could 

exercise the abilities. It was confirmed, through students from Group 2, that in order to 

define a mathematical concept, the ability to recognize the relationship between the 

components that make up the concept and to capture fundamental characteristics are 

needed in addition to the abilities of generalization. With this experiment, it was 

confirmed that the activity of defining concepts could be used for selecting gifted 

students and developing programs for gifted students. It was also found out that the 

ability to recognize the relationship between the components that make up the concept 

and to capture fundamental characteristics should be taken into consideration in 

addition to the abilities of problem-solving, generalization, and justification. It was 

confirmed, through students in Group 2 and 3, defining a mathematical concept only 

with examples are difficult even to gifted students. It is important to give counter 

examples in considering the level of learners. 
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MULTIPLE SOLUTION TASKS AS A MAGNIFYING GLASS  

FOR OBSERVATION OF MATHEMATICAL CREATIVITY  

Roza Leikin and Miri Lev 

University of Haifa  

In this paper we introduce multiple solution tasks as a tool for examination of 

mathematical creativity in school children. Students from three ability groups – gifted, 

(non-gifted) proficient, and regular – were asked to solve problems in different ways. 

We present in detail the criteria for the analysis of mathematical creativity addressing 

the novelty of solutions, students' flexibility and fluency when producing multiple 

solutions. Two tasks – conventional and non-conventional – are under discussion in 

this paper. We also outline the findings: Non-gifted proficient students and their gifted 

peers differed in solutions of the non-conventional task but manifested similar results 

when dealing with the conventional one. Students from these two groups differed 

meaningfully in all the parameters from regular students. Based on the findings we 

hypothesize that non-conventional multiple–solution tasks are an effective tool for 

examinations of mathematical creativity in school children. 

BACKGROUND  

Multiple-solution problem solving in mathematics education 

It is commonly accepted by mathematics educators that linking mathematical ideas and 

deepening understanding of how more than one approach to the same problem can lead 

to equivalent results are essential elements of the developing of mathematical 

reasoning (NCTM, 2000; Polya, 1973, Schoenfeld, 1985; Charles & Lester, 1982). On 

the other hand, Polya (1973) claims that problem solving in different ways 

characterizes experienced mathematicians since solving problems in different ways 

requires a great deal of mathematical knowledge. Additionally, Krutetskii (1976) 

argued that problems with several solutions allow examining flexibility of individual's 

mathematical thinking through investigating the switches from one mental operation to 

another. Polya (1973), Krutetskii (1976) and later Ervynck (1991) and Silver (1997) 

stressed that solving problems in different ways characterizes creativity of 

mathematical thought while some solutions may be more creative (more 

elegant/short/effective) than others. However, we did not find a systematic study that 

demonstrated that multiple solution tasks indeed may be used to show differences in 

mathematical creativity in groups of students with different ability levels.  

Creativity and giftedness 

Usually creativity is considered as one of the main components of giftedness (e.g. 

Renzulli, 2002). Research literature distinguishes between general and specific 

giftedness, and general and specific creativity (e.g., Piirto, 1999). Specific giftedness 

refers to clear and distinct intellectual ability in a given area, for example, mathematics. 

It is usually reflected in socially recognized performance and accomplishment. 
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Specific creativity is expressed in clear and distinct ability to create in one area, for 

example, mathematics. 

Gifted students "are those identified by professionally qualified persons who by virtue 

of outstanding abilities are capable of high performance" (Davis & Rimm, 2004: p. 18). 

Definitions of giftedness vary in different research sources; however several criteria 

are broadly accepted: high IQ scoring (for the general giftedness), high performance in 

a particular field (for the specific giftedness), above average ability (usually related to 

the first two criteria), task commitment and creativity. 

Torrance (1974) defined fluency, flexibility and novelty as main components of 

creativity. Krutetskii (1976), Ervynck (1991), and Silver (1997) connected the concept 

of creativity in mathematics with multiple-solution tasks. In this context (Silver, 1997, 

Ervynck, 1991, Leikin, accepted), flexibility refers to the number of solutions 

generated by a solver, novelty refers to the conventionality of suggested solutions (see 

later in this paper a more precise definition), and fluency refers to the pace of solving 

procedure and switches between different solutions.  

Solution spaces of multiple-solution tasks 

Leikin (accepted) suggested a notion of solution spaces that allows researchers to 

examine mathematical creativity when solving problems with multiple solution 

approaches: Expert solution spaces are spaces of solutions that expert mathematicians 

can suggest to the problem. With respect to school mathematics expert spaces include 

conventional solution spaces that are generally recommended by the curriculum and 

displayed in textbooks, and unconventional solution spaces that include solutions to 

problems, which are usually not prescribed by school curriculum. Individual solution 

spaces are also of two kinds. The distinction is related to the ability of a person to find 

solutions independently. Personal (available) solution spaces include solutions that 

individuals may present on the spot or after some attempt without help of others. These 

solutions are triggered by a problem and may be performed by a solver independently. 

Potential solution spaces include solutions that solvers produce with help of others. 

The solutions correspond to personal ZPD (Vygotsky, 1978). Collective solution 

spaces characterize solutions produced by a group of individuals. Both individual and 

collective solution spaces are subsets of expert solution spaces. Collective solution 

spaces are usually broader than individual solution spaces within a particular 

community and are one of the main sources for the development of individual spaces. 

In this study we use solution spaces as a tool that allows exploring students' 

mathematical creativity. By comparing individual and collective solution spaces of 

students from different groups with expert solution spaces we evaluate students' 

mathematical knowledge and creativity. 
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THE STUDY 

Research purpose  

In the light of definitions presented above, and the lack of systematic research in the 

field, we were interested in examining whether and how performance on multiple 

solution tasks demonstrates mathematical creativity. We suggested and examined 

ways in which multiple solution tasks allow analysing novelty, flexibility and fluency 

of the solutions. 

Population and procedure 

By using multiple solution tasks we explored mathematical creativity of students from 

three groups of school students, each including 6 students: Group G: generally gifted 

students, those identified with high IQ scores and having high achievements in 

mathematics. Group P: proficient students in mathematics, those who were not 

identified as G but showed high performance in high level mathematics; Group R: 

regular students who have high scores in mathematics at medium level. In order to 

reduce the knowledge differences resulting from mathematical curricula of different 

levels, we examined 10
th
 grade students in groups G and P and 11

th
 grade students in 

group R.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Task 1:  

 Solve the system: 
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Solutions: 

(1.1) Linear combination, (1.2) Substitution, (1.3) Equalizing the algebraic expressions in the equations, 

(1.4) Equalizing algebraic expressions for x (for y), (1.5) Symmetry considerations, (1.6) Graphing, (1.7) 

Trial and error strategy – substituting numbers, (1.8): Matrices.  

Task 2 (From Leikin, 2006): 

Dor and Tom walk from the train station to the hotel. They start out at the same time. Dor 

walks half the time at speed v1and half the time at speed v2. Tom walks half way at speed 

v1and half way at speed v2. Who gets to the hotel first: Dor or Tom? 

Solution 2.1 - Logical considerations: 

If Dor walks half the time at speed v1 and half the time at speed v2 and v1>v2 then during the first half of the 

time he walks a longer distance that during the second half of the time. Thus he walks at the faster speed v1 

a longer distance than Tom. Dor gets to the hotel first. 

Solution 2.2 – Illustration of logical considerations:  Solution 2.3 – Graphing: 

  

 

 

Solution 2.4 – Table-based inequality 

Solution 2.5 – Experimental modelling (walking around the classroom) 
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Figure 1: Two tasks in the study 
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All the students were presented with three tasks during individual interviews and were 

asked to solve the tasks in as many ways as they can. In this paper we report on two 

algebra tasks only (Figure 1). Task 1 is a conventional task borrowed from a school 

textbook. It fitted school curricular of the three groups of students. Its expert solution 

space includes 8 solutions (Figure 1) most of which are prescribed by the curriculum. 

Task 2 is an unconventional task taken from an Olympiad textbook (Babinskaya, 1975). 

Its expert solution space includes 5 solutions (Figure 1). Regular school (table-based) 

solution of this task is complex, based on algebraic manipulations and solving 

inequalities, whereas other (alternative) solutions are short and elegant but require 

insight. Mathematical knowledge of students from the three groups allowed them (at 

least) understand the solutions.  

We developed a system of hints that allowed us stimulate students' search for new 

solutions. For example to guide students towards the symmetry based solution of Task 

1 the interviewer asked whether "something special may be seen in this system of 

equation". 

Data collection and analysis 

All the students were individually interviewed. The interviews were video-recorded 

and transcribed. The transcripts and videotapes were analysed from the perspective of 

students' creativity. The following criteria were used to evaluate students' 

mathematical flexibility, novelty and fluency: 

Novelty was evaluated according to the conventionality of solutions, their availability 

and repetitions. Conventionality of the solution was evaluated with respect to its 

belonging to the school curriculum of a particular group of students. Conventional 

solutions (e.g. 1.1, 2.4) are those solutions that are recommended for a task by the 

curriculum and are included in school mathematics textbooks. Solutions were 

considered as partly non-conventional if the solution strategy belongs to the 

curriculum but in a different situation or topic, and thus its use requires original 

thinking. The solution was accepted as non-conventional in the cases when it was not a 

part of the curriculum. For example for students from Groups R and P solutions (1.8) 

was non-conventional. The same solution was considered as partly non-conventional 

for students from Group G, since they had learned the topic of matrices in school. 

Availability of the solutions indicated students' independent thinking. When students 

were able to produce a solution with the researcher's hint we considered the solution as 

belonging to the potential solutions space. Production of repeating solutions indicates 

that students are less creative and critical and do not evaluate differences between the 

solutions thus this was an additional criteria for the evaluation of novelty.  

We developed a scoring scheme as presented in Table 1: Students individual (without 

hints) solutions were scored with 2, 4, and 6 respectively to the level of their 

conventionality, the same solutions produced with hints got half scores.  

Flexibility was evaluated by the number of solutions (a) in individual solution spaces 

of the available solutions and (b) in individual potential solution spaces. Each student 
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was given a final score for each task independently. We also analysed the number of 

solutions in the group solution spaces. The score was calculated as a linear 

combination of the number of solutions with different scores and the scores given to 

the solutions. Fluency was evaluated with respect to the time spent by the students for 

performing the solutions. Finally we compared Novelty, Flexibility and Fluency of the 

problem-solving performance by the students from different groups (G, P, R). 

Table 1: Types of the solutions for two tasks in the study and the scoring scheme for 

evaluating the novelty of the solutions 

 
Solutions Conventional Partly  

non-conventional 
Non-conventional 

For Task 1 1.1*,  1.2,  1.3,   1.4,  1.7 1.6, 1.8  (for G) 1.5,  1.8 (for P and R) Distribution 

of solutions 
For Task 2 2.4 2.3 2.1,  2.2,  2.5 

Available 2 4 6 Scoring 

Scheme** 
Potential (with hint) 1 2 3 

*    Description of the solutions presented in Figure 1 

FINDINGS 

The following analysis is reflected in Table 2 that presents the summary of the data 

collected in the study. Note that within the space limit of this paper we do not provide 

an example of the in-depth transcript analysis that we plan to present at the conference. 

We also do not report herein about the individual differences between the students in 

the different study groups. We just outline the findings of the study related to the 

groups differences in order to explain how multiple-solution tasks allow analysing 

students' mathematical creativity, and why we consider them as effective tool for 

identification of mathematical creativity.  

Novelty  

There were clear differences between the novelty of solutions of G-students and those 

from groups R and P on the two problems. The differences between the students from 

groups P and R were less significant then those between groups G and P.  

For the system of equations novelty of the solutions varied from 2 to 6 in group G, from 

2 to 4 in group P and from 2 to 3 in group R. Four of six G-students suggested 

unconventional solution --using symmetry -- (scored with 6). No students from groups 

R and P realized individually this regularity of the system of equations and used it 

when solving the task.  However, 5 students from group P performed this solution 

based on a hint (scored with 3) whereas only two of the R-student solved the system of 

equation using symmetry even though the hint was provided. There were minor 

differences with respect to the conventional solutions of the system of equations: all 

the students from the three groups solve the system at least in two conventional ways 

(as studies in school).   
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When solving word problem all the students from group G produced unconventional 

solutions. Three P-students and one R-student solved the task in an unconventional 

way individually and 3 of P-students and 4 of R-students solved it unconventionally 

with a hint. The difference appeared in the number of unconventional solutions 

produced by the students from different groups. Four of six G-students solved Task 2 

in at least two unconventional ways whereas each of P-students and 5 of R students 

produced one non-conventional solution either individually or with a hint. 

Partly-conventional solution (Graphing:  Solution 2.3) was performed by five 

G-students, five P-students and two R-students with a hint only. The conventional 

solution (Solution 2.4) was performed by 3 of 6 gifted and 2 of 6 proficient students 

only. It appeared to be too complicated for the performance of regular students. 

Table 2: Summary of numerical data in the study 

Novelty 
No of solutions of a particular level 

Flexibility 

No of solutions 

in a space 
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Task 1: System of linear equations – conventional task 

No of students
(1)

 2  6 3 1 3 4      

No of solutions
(2)

 (2)  18 3 1 4 4      G 

Mean
(3)
    3 0.5 0.15 0.7 0.7 4 0.5 8 13.23 93.04 

No of students 3  6 5 5 1       

No of solutions (6)  18 5 5 1       P 

Mean   3 0.8 0.8 0.15  3.2 1.7 7 10.98 111.99 

No of students 5  6 3 2        

No of solutions (10)  20 3 2        R 

Mean   3.3 0.5 0.33   3.3 0.8 7 9.03 117.41 

Task 2: Word problem – unconventional task 

No of students   3 5   6      

No of solutions   3 5   11      G 

Mean   0.5 0.8   1.8 2.7 0.5 5 13.67 171 

No of students  1 1 5 3  3      

No of solutions  1 1 5 3  3      P 

Mean  0.15 0.15 0.8 0.5  0.5 0.7 1.5 4 6.67 213 

No of students    2 2  1 
     

No of solutions    2 4  1      R 

Mean    0.33 0.7  0.15 0.2 1 3 3.67 204.6 

(1)
 No of students who suggested solutions of a particular level. 

(2)
  The total no. of solutions of a particular level produced by the students in a group. 

(3)
  Mean: per student in a group (the total quantity for the group divided by 6) 

(4)
 Final score was calculated for each student as the sum of all the scores received by a student for each 

particular solution. Thus we considered it as an indication of the combination of novelty and flexibility  
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Flexibility  

Students' flexibility when solving multiple solution tasks was analyzed by addressing 

the number of solutions in individual available and individual potential solution spaces. 

Flexibility of students from the three groups differed meaningfully especially on Task 

2.  For the conventional task (Task 1) we found that individual solution spaces of all 

the students in three groups included more than 3 solutions. For the unconventional 

task (Task 2) personal solution spaces differed meaningfully: whereas all personal 

solution spaces of G-student included more than 2 solutions, for P and R students some 

of these spaces included one solution only and some of them were empty. The potential 

solution spaces of P-students included 1 or 2 solutions. In other words hints helped 

them in producing multiple solutions; however, alone they were not able to perform the 

solutions. They were less flexible than G-students in their ability to change the 

direction of their mathematical thought without help.  

Not less important for the analysis of the students' flexibility was consideration of the 

solutions in collective solution spaces. On the two problems collective solution spaces 

of G-students covered expert solution spaces whereas collective solution spaces of P 

and R students were less complete (Table 2). 

Fluency 

Time per solution presented in Table 2 demonstrates time spent by the students on 

successful solutions only. Overall G-students were more fluent in their successful 

solutions; they performed them and switched the directions more quickly than students 

in other groups did. Note that the fact that P-students spent more time on the solutions 

than R-students when solving Task 1 demonstrates that these students are more 

persistent in their attempts to solve the problem. In this paper we did not considered 

time spent on the ineffective attempts the students made when solving the problems 

that is included in larger study. Thus this table does not reflect the actual time the 

students spent with the researcher during the interviews.  

FINAL HYPOTHESIS 

By observing the differences between the groups of students in their novelty, flexibility, 

and fluency we used definitions of flexibility suggested by Torrance (1974) for general 

flexibility, and by Ervynck (1991) and Silver (1997) for mathematical creativity. 

Consequently we asked how we can combine novelty, flexibility, and fluency as 

analysed in this study to evaluate mathematical creativity. 

We found that the differences between the groups are task-dependent. The final score 

demonstrated the differences between the groups in the combination of novelty and 

flexibility. Not surprisingly gifted received higher score than proficient students and 

they received higher scores than regular students. However we were surprised by the 

differences in the gaps between the different groups for the two problems (Table 2). 

After several trials that we are planning to present at the conference, we suggest here 

the following criterion for the analysis of mathematical creativity by means of 



Leikin & Lev 

PME31―2007 3-168 

multiple-solution tasks: final score (novelty by flexibility) divided by the product of 

time per solution and the number of solutions in the expert solution space of the task.  

Table 3 presents the criterion calculated for the two tasks presented in this paper for the 

three groups pf students. By observing this table we hypothesise that Task 2 may allow 

identification of students' mathematical creativity and (probably) giftedness.   

Table 3: Suggested creativity criterion 

 Conventional task Unconventional task 

Generally Gifted students 1.8 1.6 

Students Proficient in mathematics 1.2 0.6 

Regular mathematics students 0.96 0.3 

Now, we start the next stage of the study which focuses on refining the criteria with 

larger population and quantitative research tools.  
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INTERACTIVE WHITEBOARDS AS MEDIATING TOOLS FOR 

TEACHING MATHEMATICS: RHETORIC OR REALITY? 

Steve Lerman and Robyn Zevenbergen 
London South Bank University / Griffith University 

 

Interactive whiteboards (IWB) are an innovation that is gaining considerable presence 

in many contemporary classrooms. This paper examines the use of IWBs in 

mathematics classrooms. Using a productive pedagogies framework to analyse 

classroom videos, it is proposed that the classrooms observed used a restricted 

approach in their use of IWBs. It was found that they were used for quick introductions 

to lessons, were teacher directed, whole class teaching and fostered shallow learning. 

Through interviews with the teachers, it was found that the approaches observed were 

based on assumptions about learners and technology. 

In this paper, we explore the ways in which teachers use Interactive Whiteboards 

(IWBs) in mathematics classrooms. There is a sense that this tool may offer 

considerable potential to enhance student learning. Promoters of the tool provide case 

studies of the novelty and support that can be achieved through the clever use of the 

tool for example, (Edwards, Hartnell, & Martin, 2002). How this is enacted in 

classrooms is the focus of the analysis in this paper. In exploring computer-mediated 

learning, Waycott, Jones and Scanlon (2005, p.107) reported that there is a reciprocity 

between the tools and the learner where “the user adapts the tools they use according to 

their everyday practice and preferences in order to carry out their activities; and how, 

in turn, the tools themselves also modify the activities that the user is engaged in.” We 

argue that this is the same for teachers. 

BACKGROUND 

The introduction of interactive whiteboards into schools in the UK has been strongly 

supported by the government (Beauchamp, 2004),  with over £50m being spent on 

their implementation in primary and secondary schools (Armstrong et al., 2005). 

However, it has not received the same fiscal support in Australian schools. Many 

schools are supporting the intorduction of these devices through various means but 

without systematic support. In most cases, the implementation of IWBs is a 

school-based decision and as such is supported by funds raised by the schools. How the 

IWBs are implemented within a given school is dependent upon the resources of the 

school to provide the equipment and the beliefs of the teaching staff as to the value of 

the tool. As such, there is considerable variation across Australia as to their uptake and 

implementation. 

Drawing from socio-cultural perspectives on the use and uptake of mediating 

technologies – in this case IWBs, Armstrong et al (2005) suggest that there is a 

tendency for teachers to use IWBs as “an extension of the non-digital whiteboard” (p. 

458). Beauchamp (2004) argued that the transition from traditional modes of teaching 



Lerman & Zevenbergen 

PME31―2007 3-170 

to the totally integrated use of IWBs in classrooms demands a shift in pedagogical style 

of the teacher. For teachers to realize the potential of IWBs, Glover and Millar (2002) 

contend that teachers need to recognize that there is considerable interactivity 

associated with their use. They argue that the IWB can engender an approach that fails 

to radicalize pedagogy and where the IWB is used to enhance students’ motivation 

rather than become a catalyst for changing pedagogy.  

The extension of the computer through the use of IWBs creates new opportunities and 

obstacles to learning. In studying the use of IWBs in English classrooms, it was 

reported that 

“IWB can facilitate and initiate learning and impact on preferred approaches to learning. 

The pupils describe how different elements of software and hardware can motivate, aid 

concentration, and keep their attention. On the negative side, pupils candidly describe their 

frustration when there are technical difficulties, their desire to use the board themselves 

and their perceptions of teacher and pupil effects (Wall, Higgins, & Smith, 2005 p. 851). 

Greiffenhagen (2000) argued that the availability of IWBs as a teaching aid is only of 

value where it becomes part of the regular pattern of classroom life.  

In their study of the uptake of IWBs in a secondary school, Glover and Miller (2001) 

proposed that IWBs offered considerable benefits to learning. They reported that 

students were more likely to engage in learning due to the surprise element that was 

offered through the IWB, the large visual cues offered through the IWB presentation 

format, and the quicker pace of lessons.  

As a teaching tool, IWBs have considerable potential to change interaction patterns. In 

their study of classrooms – both literacy and numeracy in IWB and non-IWB 

classrooms – Smith, Hardman and Higgins (2006) found that there is a faster pace in 

lessons using IWBs than non-IWB lessons; that answers took up considerably more of 

the overall duration of a lesson; and that pauses in lessons were briefer in IWB lessons 

compared with non-IWB lessons. They also reported a faster pace in numeracy lessons 

than in literacy lessons. While they reported some support for the potential of IWBs, 

they concluded that overall the use of IWBs was not significantly changing teachers’ 

underlying pedagogy. The majority of teacher time was still spent on explanation and 

that recitation-type scripts was even more evident in IWB lessons. They found that 

while the pace of the lessons increased, there had been a decline in protracted answers 

from students and that there were fewer episodes of teachers making connections or 

extensions to students’ responses. They also claim that there is a faster pace in lessons 

but less time is being spent in group work. There is a tendency for teachers to assume a 

position at the front of the class when using IWBs (Maor, 2003). Similarly Latane 

(2002) suggested that there needs to be a move from teacher-pupil interaction to one of 

pupil-pupil interaction. In studying mathematics classrooms, Jones and Tanner (2002) 

reported that interactivity can be enhanced through quality questioning where the 

quality of the questions posed and the breadth of questioning needs to be developed to 

ensure interactivity in mathematics teaching when using IWBs.  
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DATA COLLECTION 

The data reported here compares data collected as part of a larger study (Lerman &  

Zevenbergen, 2006) with subsequently collected data where teachers have been using 

IWBs. In this paper, we present the analysis of classroom lessons using a particular 

framework. A total of nine schools participated in the study. Over the three years of 

data collection, some schools dropped out of the study, and others came in. Five 

schools remained in the study for its duration. Purposive sampling techniques were 

used in the selection of schools. The schools were selected on their representativeness 

of the diversity found in Australian schools in terms of social groupings being served 

(high, medium and low SES), geographical location (city, rural, remote); technology 

implementation (high or medium; integrated into classroom, computing laboratories); 

and school structure (single age classes, multi-age classes). Classrooms from the upper 

primary sector were involved in the data collection.  

Video data were collected in two classrooms where the teachers had access to IWBs. 

The teachers video-taped their lessons which were than analysed using the productive 

pedagogies framework. 

DESCRIPTIVE ANALYSIS OF PEDAGOGY 

Two analyses were conducted on the video data. In the first instance, a running record 

was taken of the lesson with a transcript developed of the lesson. This record consisted 

of both description of the lesson and the interactions between teacher and students. Our 

data confirm that of Smith, Hardman and Higgins (2006) where we could observe the 

level of questioning being used by teachers in these lessons. It was of a lower level 

format where teachers were asking more recall questions than those requiring deeper 

levels of understanding. This type of questioning also allowed for a quicker pacing of 

the lesson since teachers were able to ask quick fire questions where there was little 

depth in the responses required. 

The predominant approach used by teachers when using the IWBs was that of whole 

class teaching. In these settings, the teacher controlled the lesson, inviting students to 

participate in manipulating the objects. In all cases, only one child was involved in 

such manipulations at any one time. The remaining students sat on the floor or in their 

desks. However, in observing the students, there were very few behavioural issues one 

would expect to see when children are seated for such lessons, and that they were 

predominantly focused on the teacher talk and actions. This observation was consistent 

across the lessons and schools suggesting that even though the lessons were whole 

class and teacher lead, the students appeared to be engaged with the lesson. 

In all cases, the teachers used the IWBs as the introduction to the lesson. Typically, the 

orientations with the IWBs were between 5-15mins and were used to orientate the 

students to the topic that would then be followed. The introduction was whole class and 

quick pacing. In some cases the teachers used pre-existing lessons that had been 

developed by other teachers and were available through the resources. In other cases, 
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they used the tools (such as fractions, calculator or clocks) that came with the IWBs. In 

all cases, they used the resources that were part of the packages supplied with the board. 

Once the students had been involved in the introductory component of the lesson, they 

returned to their desks to work on activities related to the topic being introduced. 

Depending on the resources used by the teacher, there were instances where the IWB 

made possible a rich introduction to aspects of mathematical language. For example, in 

one lesson the teacher was using the fraction tool in which a shape (chosen by the 

teacher - circle, rectangle and square) were used to represent various fractions. These 

could be shown in a variety of ways such as pies in the case of circles or through 

horizontal, vertical or grids on the rectangles and squares. Through the ease with which 

the shapes could be selected and how they were represented, the teacher was then able 

to draw on a repertoire of language to discuss the shapes, representations and fractions. 

The ease and speed at which shapes and denominators could be selected enabled a lot 

of talk/questions about the numbers being represented. As with other lessons, the speed 

of questions and delivery meant for fast pacing. However, there was little to no 

evidence of deeper probing of concepts or for mathematical thinking in terms of 

drawing patterns across the experiences. In the lesson on fractions, for example, while 

students saw a range of fractions (halves, quarters, thirds, sixths, eighths, tenths), these 

were simply representations of denominators and with different numerators being used. 

In some cases, equivalence was discussed - such as 4/8 was talked about as being 

equivalent to ½. However, this discussion was only undertaken when the 4 shaded 

pieces were adjacent so that it was clearly ½. The discussion did not occur when it was 

possible for the 4 segments to be scattered. Similarly, there was no discussion about the 

relationship between the size of the segments and the number in the denominator – that 

is, the inverse relationship between the segment and number. So while the students 

were exposed to a range of experiences, the richness of the mathematics was not being 

drawn out of the lessons. 

PRODUCTIVE PEDAGOGIES ANALYSIS 

While the observations provided us with some indicators of how the IWBs were being 

used in the classroom, we also employed a quantitative measure to document the use of 

IWBs. This measure allows us to more rigorously analyse the lessons. We have used 

this approach in analyzing the use of ICTs in classrooms (Lerman & Zevenbergen, 

2006) so are able to compare those data against the use of IWBs. The process involves 

three observers observing the lessons which had been videotaped. Each observer rates 

the lesson against nominated criteria on a scale of 0-5 where 0 indicates that there was 

no evidence of that criterion in the lesson and 5 indicates that it was a strong feature 

that was consistent throughout the lesson. The ratings are made at the completion of the 

lesson and the score is for the overall lesson. If there is some evidence of a criterion in 

the opening phase of the lesson but does not appear again, then this means that it was 

not a strong feature of the overall lesson. The three observers rate their observations 

independently and then come together to come up with a common score. This involves 

a process of negotiation to arrive at the common outcome. In most cases, there was 
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usually a difference of 1 between the ratings and the ensuing discussion meant that the 

observers needed to negotiate their ratings with the other two. 

The framework we have used draws on the work of the Queensland Schools 

Longitudinal Reform Study (Education Queensland, 2001) in which the researchers 

analysed one thousand lessons in terms of the pedagogies being used by teachers. The 

method was that described above and where the criterion for each rating was based on 

the Productive Pedagogies. There are four dimensions within the framework – 

Intellectual Quality, Relevance, Supportive School Environment and Recognition of 

Difference – in which there are a number of items that are evidence of that theme.  

Within the Productive Pedagogy approach, there is a strong emphasis on raising the 

quality of teaching in terms of the intellectual experiences and social learning. The 

outcomes of the Queensland study (Education Queensland, 2001) indicated that 

teachers were very good at providing a supportive learning environment but that the 

intellectual quality was quite poor. When the analysis was undertaken across key 

learning areas, it was reported that the learning environments in mathematics scored 

the least favourably suggesting that the intellectual quality in mathematics (across all 

years of schooling) was poor. 

In seeking to explore the use of IWBs in mathematics classroom, we undertook the 

same analysis of the classroom videos. As can be seen in Table Two, the scores are low 

in most areas. We have included the analysis of classroom data were ICTs were used in 

mathematics classrooms as a comparison.  

 ICTs IWBs 
Dimension of Productive Pedagogy Mean SD Mean SD 
Depth of knowledge 1.64 1.36 1.5 1.46 
Problem based curriculum 2.19 1.38 .92 0.83 
Meta language 1.69 1.07 1.25 1.87 
Background knowledge 1.76 1.16 1.67 1.63 
Knowledge integration 1.48 1.27 0.42 0.45 
Connectedness to the world 1.38 1.44 0.42 0.45 
Exposition 1.19 1.64 0.83 0.82 
Narrative 0.31 0.78 0.17 0.18 
Description 2.24 1.02 1.42 1.25 
Deep understanding 1.43 1.47 1.25 1.19 
Knowledge as Problematic 1.14 1.47 1.33 1.36 
Substantive conversation 1.26 1.40 0.5 0.46 
Higher order thinking 1.31 1.55 1.33 1.36 
Academic engagement 2.23 1.38 1.5 1.46 
Student direction 0.79 0.92 0.33 0.28 
Self regulation 3.24 1.12 2.5 2.45 
Active citizenship 0.30 0.78 0 0 
Explicit criteria 2.83 1.17 1.33 1.28 
Inclusivity 0.33 0.75 0 0 
Social support 2.51 0.25 1.25 0.62 

Table Two: Productive Pedagogy Analysis of IWB use in Upper Primary Classrooms 

We have reported the data for when teachers used ICTs to support numeracy learning 

elsewhere (Lerman & Zevenbergen, 2006) and this showed very low levels of quality 

learning potential. However, when using the same framework to analyse the use of 
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IWBs, the results were even lower. Nine out of the twenty pedagogies (those in italics) 

scored substantially lower when using IWBs. Most of the lower scores were in those 

two dimensions that relate to the intellectual aspects of mathematics learning. From 

these data we can conclude that the use of IWBs actually reduces the quality of 

mathematical learning opportunities; provides fewer opportunities for connecting to 

the world beyond schools; and offers little autonomous/independent learning 

opportunities for students. After these scores were obtained and analysed, we returned 

to the schools and interviewed teachers to seek some explanation of the findings. 

TEACHER INTERVIEWS 

In this section for reasons of space, we provide commentary on just 3 aspects of 

teachers’ pedagogy that appear to us to be the most salient in their responses. 

Motivation 

One of the observations in the earlier findings was that the IWBs seemed to be used for 

the introduction to the lessons. In following this observation, teachers were asked if 

this were the case and if so, why. In the interviews, it was confirmed that the teachers 

tended to use the IWB to orientate the lesson and to motivate the students. 

Marcie: When the kids are all sitting and we are doing with the whiteboard, there are very 

few behaviour problems. They seem keen to be involved, and very eager to be the one to 

come to the board. You can see that they are all really wanting to get up the front and have 

a go. Some of my quiet kids getting really animated when we do the whiteboards whereas 

in the normal work, you hardly know they are there. 

Heidi: I use it to get the lesson started. The kids are all together, there are all on the one task, 

they know what we are doing. That is a good way to start the lesson. It is also good as the 

kids are very motivated by the boards so they are keen to get into the lesson.  

Pacing 

When using the IWBs, it would appear that the teachers were aware of the faster pace 

of the lessons. They articulated that they posed a lot more questions and the students 

had greater opportunities for participating in the lessons due to the increased 

questioning.   

Maxine: One of the things that I like about the whiteboards is that I can ask a lot more 

questions. You just have to click on the menu and there is the lesson or the things you need 

so you are not wasting a lot of time putting up overheads or drawing things on the board. I 

can ask more questions to the kids to see what they know and to get them to think about 

things. Like when we did the lesson with the clocks. You just click on the clock and there it 

is. You can just move the time around as quick as they kids respond. I think they like the 

quicker speed. They seem to enjoy the race of the lesson. If they answer quickly, then we 

can do another one or something a bit different. 

Saves Time 

Most of the teachers had some comment about the time factor in the use of IWBs. It 

was seen to save preparation time in two different ways. In the first instance, one 
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teacher commented on how he drew on the resources that had been made by other 

teachers as these were ‘tried and proven’ examples of lessons that worked. In 

observing his lessons, he would select from the databank and then implement the 

lesson.  

Shane: I find that there are a whole lot of really good lessons that I can just use. If I am 

doing something on area for example, there are lessons already made up. Some other 

teachers have developed them so they have to be good ones. I am sure that the company 

only puts up the best examples. I have found these to be very handy and they save me doing 

the preparation work. I guess I change them a bit to suit me and the kids but they are pretty 

much there. 

Another teacher commented on how, when using the IWB, the toolkit meant that the 

resources were all in the one place so she did not have to hunt around for them. 

Knowing that the protractor, ruler, clock, calculator were all on the screen and at the 

touch of the board, was seen to be a considerable timesaver.  

Jemima: I think the whiteboard is a great resource. You have the tools there on the board, 

you just need to click and they are there. 

CONCLUSION 

There is little doubt that IWBs have the potential to enhance learners’ opportunities to 

experience mathematical representations and develop their mathematical thinking. As 

with all resources, mathematical or other, internalising a tool, be it the number line or a 

calculator, LOGO, dynamic geometry or Graphic Calculus, or presentation tools such 

as overhead projectors or IWBs, transforms the world, in this case of mathematical 

pedagogy for the teacher. That transformation is always mediated by other experiences, 

however. However, by themselves they will not transform pedagogy, no matter what 

their potential. Indeed, as we have reported in this paper, the technologically 

impressive features of the IWB can lead to it being used to close down further the 

possibility of rich communications and interactions in the classroom as teachers are 

seduced by the IWB’s ability to capture pupils’ attention. We suspect, also, that 

teachers’ advance preparation for using the IWB, often via the ubiquitous powerpoint 

package or pre-prepared lessons for the IWB, are leading to a decreased likelihood that 

teachers will deviate in response to pupils’ needs and indeed might notice pupils’ needs 

less frequently through the possibility to increase the pacing of mathematics lessons. 

Elsewhere (Zevenbergen and Lerman, in preparation) we apply an activity theory 

framework to try to understand the tensions and contradictions in teachers’ use of the 

IWB and to identify possible developmental trajectories for realising some of their 

potential to change pedagogy for the better. 
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Abstract This report discusses an oral explanation and a written proof given by a 

Hong Kong secondary school student for a construction task in Sketchpad. The 

analysis gives hints on what spoken and written discourses in DGE might look like 

and sheds light on bridging the empirical-theoretical gap in DGE research. In 

particular, the idea of diachronic objects in DGE is proposed to be useful in studying 

reasoning and discourse in DGE. 

Introduction 

Dynamic geometry environment (DGE) has been a widely studied computer platform 

for the learning and teaching of geometry in the past two decades (see for example, 

Educational Studies in Mathematics 44:1-161, 2000; International Journal of 

Computers for Mathematical Learning 6:229-333, 2001; Math ZDM 34(3), 2002; 

Laborde, 2003). A major agenda in this research area has been how students 

understand and perceive geometry in this dynamic environment. DGE vitalizes the 

arena of experimental mathematics and opens up mathematics classroom into 

scientific-like laboratory. Much fruitful work has been done on studying students’ 

dragging strategies and the process of conjecture forming in DGE (see for example, 

Hölzl, 1996; Arzarello et al, 2002). However, researchers in DGE have been 

uncertain about the effect of DGE in “promoting” students’ cognitive realm from 

empirical experiences to theoretical understanding; in particular, from making 

geometrical conjectures to production of formal axiomatic proof. Henderson stressed 

that proof means “a convincing communication that answers-Why?” (Henderson and 

TaimiĦa, 2005, p.40). What does a convincing communication in DGE look like? 

This concerns how one talks about and writes about geometry in the context of DGE. 

Studying the spoken and written discourses in DGE might be a key to bridge the 

empirical-theoretical gap, since language is a vehicle that carries internal thoughts 

and in turn brings about the conceptualization of the world around us. Clearly these 

DGE discourses must be rooted in visualization. Rodd (2002) contended that 

visualization can be regarded as an a-linguistic mathematical warrant (“that which 

secures knowledge”, Rodd, 2002, p.222) and she illustrated her argument using 

Giaquinto’s (1992) “criteria for a geometrical proposition to have discovered by 

visualization” in a dynamic geometry context. This visual warranting involves “a 

syntheses of tacitly comprehended properties” of what is being looked at and “the 

intention to make obvious and requires a threshold grasp of the concepts in the visual 

presentation” (Rodd, 2002, p.238). Furthermore, Giaquinto (2005) proposed that 

visual experiences and imagining can indeed trigger belief-forming dispositions 

leading to acquisition of geometrical beliefs which constitute knowledge. Hence, 
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visualization (a-linguistic) can have an epistemic function in mathematics in parallel 

with symbolic formal axiomatic proof (linguistic). How do these a-linguistic and 

linguistic warrants relate to each other? Halliday (2004) regarded language as a 

vehicle to re-shape human experience. Experience “was being transformed into 

meaning; and this transformation was effected by the grammar” where “grammar is a 

theory of human experience” (Halliday, 2004, p.9). “A verb means happening, a noun 

means and entity – a thing; and both typically have some correlates in the world of 

perceptions. We call this mode of meaning the congruent mode of the grammar” 

(ibid., p.14). Thus we could study how dynamic visual experiences and perceptions in 

DEG can be re-shaped in the congruent mode. In particular, how does one explain 

geometrical beliefs acquired by dynamic visualization in DGE. The purpose of this 

report is to initiate an exploration in this direction.  

Background 

Or (2005) studied the construction-experimentation-conjecturing cycle in DGE with a 

group of secondary students in Hong Kong. He observed that in successful DGE 

student exploration episodes, the construction-experimentation-conjecturing cycle 

acts as a fundamental recursive cycle that generates a cognitive vertical spiral with 

each level situated on a higher cognitive plane than the previous one. This spiraling 

process eventually stops when an explanation is reached. We will discuss in depth an 

oral explanation and a written proof given by one of the students in Or’s study for a 

successful DGE construction task. This student’s work will offer us a glimpse of 

what a discourse in DGE might look like.  

Morris was an intelligent Form 4 (Grade 10) student in a Hong Kong secondary 

school. He was very keen in mathematics and a high achiever in the subject. Since 

Form 1 (Grade 7), Morris had been the recipient of the Form Mathematics Subject 

Prize. He was a core member of the school team to participate in mathematics 

competitions in Hong Kong and showed outstanding performance. Morris was chosen 

by his school to enroll in a training program for selecting secondary school students 

to represent Hong Kong to participate in the International Mathematics Olympiad. He 

was an experienced Sketchpad user, often using Sketchpad to solve geometric 

problems on his own. Morris attended a Sketchpad workshop organized by the 

school’s Math Club supervised by the second author. During the workshop, the 

participants were taught the technique of relaxing a condition (Straesser, 2001) when 

solving construction problems in Sketchpad and using the TRACE function to 

visualize locus while dragging. Afterwards, the following problem was given to the 

participants as an exploration task: 

Square inscribed in a regular pentagon 

Investigate how to construct a square with 4 vertices lying on 

the sides of a regular pentagon as show in the figure on the 

right. Write down your method of construction and explain 

why your construction works. 
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Morris solved the problem without much difficulty and he was asked afterwards to 

explain his construction. 

The Interview 

The following is a transcript of the interview conversation between Morris and the 

second author. The spoken language used was Cantonese (the local Chinese dialect 

used in Hong Kong). The English translation is faithful to the Cantonese original, 

capturing critical moods and word meanings. During the interview, Morris was 

accessible to Sketchpad. 

(I: Interviewer, M: Morris) 

1.   M: Let a movable point (G) on this side (AB) of the pentagon. Construct a 

square (FGHI) like this. Then this point (I) would lie on this line (l)  (see 

Figure 1).  

Figure 1 

2. I: Why? Do you mean when G varies, the locus of I is this straight line (l)?  

3. M: Ym…. Yes. (Morris traced the locus of I to show that the locus of I is the 

straight line l).  

4. I: So what are you going to do next?  

5. M: So I project this line (l) and take the intersection (of l and CD) and draw a 

square … (Morris used the intersection R to draw a square PQRS as shown in 

Figure 2). 
 
 

 

 

 

 

 

 

 

 

 

Figure 2 
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6. (Morris then hid all the subsidiary lines and circles leaving only the pentagon 

and the square PQRS. Subsequently he dragged E arbitrarily to show that the 

constructed square is robust.)  

7. I: Why? Why is the locus a straight line? Can you explain?  

8. M: This line (FI) and this line (AE) are parallel. This side (BC) is fixed. 

Therefore this angle (∠BFG) is fixed (when G moves). This triangle (∆BGF) 

is similar. No matter how you move G this triangle is always similar. That is, 

the ratio of this side (BF) and this side (FG) is always a constant. Since this 

side (FG) and this side (FI) are equal, that means the ratio of BF and FI is 

always a constant. Since the included angle (∠BFI) is the same, the triangle 

(∆BFI) becomes similar, and hence the angle in the left (∠FBI) is always the 

same. Therefore it comes out to be a straight line. 

9. I: Why is this angle (∠FBI) always the same? 

10. M: Because of similar triangle! 

11. I: Which triangle is similar to which? 

12. M: Every triangle is similar! (Morris dragged G when he said so.)  

13. I: You feel that they are similar? 

14. M: They are always similar! 

15. I: O.K.! How did you come up to this? 

16. I don’t know …. I just use an arbitrary method to prove this … the angle 

(∠FBI) is a constant. 

17. I: How do you know that you should prove this angle (∠FBI) to be a constant? 

18. M: Mm… it moves back and forth (Morris dragged G back and forth when he 

said so). This point (I) lies on the line (l) and we should look at this angle 

(∠FBI).  

19. I: Have you seen this problem before? Is this the first time you work on this 

problem? 

20. M: I think so. 

21. I: When you move (G) back and forth it reminds you that you should look at 

this angle (∠FBI). Can I say so? 

22. (Morris nodded his head slightly.) 

23. I: Do you consider yourself solved the problem? 

24. M: Ym … I think so. 

25. I: Can you write down what you have already said? You can just write it down 

briefly. 

26. M: Ym … I can try. 

27. (After ten to fifteen minutes Morris presented the following written 

explanation.)  
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(A scanned image of Morris’ written proof) 

 

Analysis 

The construction 

The key idea in Morris’ construction of the robust square is the “movablilty” of point 

G which induced the construction of line l. The description given by Morris in Line 1 

was a possible “if…then” type statement in DGE:  

If an object O1 is movable (that is, draggable), then certain object O2 dependent on  

O1 would behave in a certain way. 

In such a statement, action words or phrases are used to state the potentiality of a 

dynamic situation, rather than merely ascertaining a rigid outcome. However, Morris’ 

description was not completely transparent, plausibly because he was engaged in a 

mixed cognitive mode in which he tried to express DGE phenomena using the spoken 

language. Thus the interviewer pressed on, prompting Morris to “clarify” his 

description using the formal mathematical term “locus” (Line 2).  Interestingly, 

Morris responded to the word “locus” by actually tracing it in DGE (Line 3), 

indicating that his cognition indeed was immersed in DGE. Morris then went about 

constructing the required robust square (Lines 5, 6).  

The oral explanation 

The interviewer probed deeper and asked Morris why the locus was a straight line 

(Line 7). This required Morris to explain a phenomenon (or certain behaviour) in 

DGE. The explanation that Morris gave (Line 8) was quite illuminating and the 

descriptive language he used might shed light on possible discourse in DGE. It is not 

difficult that after reading Line 8, one can observe immediately the concept of 

invariance under variation. This is reflected by the repeated usage of the words 

“fixed”, “always”, “constant” and “same”. And these words were qualified most of 
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the time explicitly or implicitly by phrases that referred to the movability of point G: 

“when G moves”, “No matter how you move G”, “the triangle ∆ BFI becomes 

similar”. Again, Morris’ description was not immediately sensible. In particular, a 

key idea in the explanation was the curious statement “this triangle ( ∆ BGF) is 

similar”. The use of the singular “this” is intriguing since “this” here actually referred 

to a (continuous) sequence of ∆BGF under the dragged movement of point G. The 

interviewer indeed pursued this apparent ambiguity afterwards. Morris responded to 

this by dragging point G and proclaiming “Every triangle is similar!” (Lines 11 to 14). 

A probable reason for using the signifier “this” is when Morris dragged G, the 

labeling of ∆BGF did not change though ∆BGF was varying; it was always ∆BGF 

on the screen!  This could induce a special type of reasoning (or explaining) in DGE 

in which a signified object in DGE could have a diachronic nature. That is, one has to 

conceptualize a draggable object in DGE as it varies (over time) under dragging. 

Hence, a whole object in DGE should be understood as a (continuous) sequence of 

the “same” object under variation. Morris adopted this mode of thinking when he 

talked about ∆BGF, ∠BFG, ∠BFI and ∠FBI in Line 8.  

The written proof 

The interviewer requested Morris at the end of the interview to write down his oral 

explanation. Morris produced an intriguing “formal” proof explaining that the locus 

of I under the movement of G is a straight line. The proof was written up in the 

format of a proof in Euclidean deductive geometry with a few DGE twists in it.  

There was a diagram depicting a static instant of the sequence of squares and the 

straight lines that passed through G and I. Beside the diagram was a statement “G is 

movable”. Together the diagram and the statement formed a premise upon which 

subsequent arguments could be derived. However, any “logic” used hereafter must be 

one that could reflect the movability of G. Corresponding to the phrase “This triangle 

(∆BGF) is similar” (Line 8) that Morris used in his oral explanation, he wrote in the 

proof “∆BFG ~ ∆BF'G'. Apparently, ∆BF'G' was not in the diagram. The primes 

that accentuated F and G seemed to symbolize the varying F and G under dragging. 

This was consistent with Morris’ diachronic understanding of objects in DGE 

discussed above. Another type of such diachronic expression that appeared in 

Morris’s proof was “BF/FG = constant”. The word “constant” had a deeper meaning 

than just being a numerical value; it meant invariant under variation via dragging. 

Thus the juxtaposition of a symbolic deductive proof formalism and a DGE-

interpreted usage of symbols/signs seems to make Morris’ written proof into a bridge 

that transverses the domains of experimental geometry (DGE) and deductive 

geometry (axiomatic Euclidean).  

 

Discussion 

From the above analysis there emerged a few ideas that might become significant 

when studying possible discourses in DGE.  
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(1) Words like “movable”, “become”, “always”, “constant” that connote (or is 

congruent to) motion, transition, invariance should be prominent in a DGE 

discourse. These words should be interpreted under the drag-mode or any 

other function in DGE that induces variations. 

(2) Drag-sensitive objects in DGE are diachronic in nature. The concept of a 

whole could be a concept of continuous sequence of instances under 

dragging or variation. Consequently, the denotation (or congruency) of such 

objects may transcend the usual semantic of the spoken languages. For 

example, a singular “this” may actually mean many. 

(3) Writing up “formal” DGE proofs may involve using mathematical symbols 

or expressions that transcend the usual semantic of a traditional 

mathematical symbolic representation. For example, a DGE ∆ABC may not 

point to a particular triangle; rather it represents all potential triangles ABC 

under dragging. In traditional axiomatic proof, one would say “for an 

arbitrary ∆ ABC”. The diachronic nature of objects in DGE replaces the 

imaginary arbitrariness assumption in traditional mathematical proof. 
 
These observations may serve as good sign posts pointing to paths that could lead to 

the conceptualization of written or spoken discourses in DGE. Diachronic 

simultaneity and invariant under variation are key concepts in understanding 

discernment in the theory of variation (Marton and Booth, 1997). Leung (2003) 

discussed how these features could be used to interpret phenomena experienced in 

DGE. Variation plays a core role in DGE reasoning and discourse. Morris’s success 

was largely due to his talent in mathematics and his familiarity with Sketchpad. He 

was able to cognitively immerse in and to integrate his mathematical knowledge with 

what he experienced in DGE. This enabled him to speak and write creatively using 

his prior knowledge to reflect his reasoning in DGE. Hence prior mathematical 

knowledge and experiences are essential for a learner to construct deep meanings in 

DGE (another type of diachronic simultaneity). What should be the appropriate 

semantics and syntax that carry mathematical meanings in a DGE discourse, 

consequently forming a basis for the type of reasoning in DGE? We hope this report 

will stimulate interest in this research direction.   
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PROSPECTIVE MIDDLE SCHOOL TEACHERS’ KNOWLEDGE 

IN MATHEMATICS AND PEDAGOGY FOR TEACHING - THE 

CASE OF FRACTION DIVISION 

Yeping Li and Dennie Smith 
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In this paper, we investigated the extent of knowledge in mathematics and pedagogy 

that prospective middle school teachers have learned and what else they may need to 

know for developing effective classroom instruction. We focused on both prospective 

teachers’ (PT) own perceptions about their knowledge in mathematics and pedagogy 

and the extent of their knowledge on the topic of fraction division. The results reveal 

a wide gap between these PT’s general perceptions/confidence and their limited 

knowledge in mathematics and pedagogy for teaching, as an example, fraction 

division. The results also suggest that PTs need to master specific knowledge in 

mathematics and pedagogy for teaching in order to build their confidence for 

classroom instruction. 

Accumulated research findings in past decades have led to the understanding that 

teachers’ knowing mathematics for teaching is essential to effective classroom 

instruction (e.g., Ma, 1999; RAND Mathematics Study Panel, 2003).  Corresponding 

efforts have also been reflected in teacher preparation programs that call for more 

emphasis on prospective teachers’ learning of mathematics for teaching (CBMS, 

2001; NCTM, 2000).  Such efforts can presumably increase the quality of pre-service 

teacher preparation and prospective teachers’ confidence and ultimate success in 

future teaching careers.  Yet, much remains to be learned about the extent of 

knowledge in mathematics and pedagogy that prospective teachers acquire and what 

else they may need to know for developing effective classroom instruction.  As a part 

of a large research study of prospective middle school teachers’ knowledge 

development in mathematics and pedagogy, this paper focuses on a group of 

prospective middle school teachers’ knowledge of mathematics and pedagogy for 

teaching in general and on the topic of fraction division, in particular. 

The topic of fraction division is difficult in school mathematics not only for school 

students (Carpenter et al., 1988), but also for prospective teachers (Ball, 1990; Simon, 

1993). Mathematically, fraction division can be presented as an algorithmic 

procedure that can be easily taught and learned as “invert and multiply.”  However, 

the topic is conceptually rich and difficult, as its meaning requires explanation 

through connections with other mathematical knowledge, various representations, 

and/or real world contexts (Greer, 1992; Ma, 1999).  The selection of the topic of 

fraction division, as a special case, can present a rich context for exploring possible 

depth and limitations in prospective teachers’ knowledge in mathematics and 

pedagogy.  Specifically, this study focuses on the following two research questions: 
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(1) What are the perceptions of prospective middle school teachers regarding 

their knowledge in mathematics and pedagogy for teaching? 

(2) What is the extent of prospective middle school teachers’ knowledge in 

mathematics and pedagogy for teaching fraction division? 

 

CONCEPTUAL FRAMEWORK 

The conceptual complexity of the topic of fraction division is evidenced in a number 

of studies that documented relevant difficulties pre-service and in-service teachers 

have experienced (e.g., Ball, 1990; Borko et al., 1992; Contreras, 1997; Simon, 1993; 

Tirosh, 2000; Tzur & Timmerman, 1997).  Although both pre-service and in-service 

teachers can perform the computation for fraction division, it is difficult for teachers, 

at least in the United States, to explain the computation of fraction division 

conceptually with appropriate representations or connections with other mathematical 

knowledge (Ma, 1999; Simon, 1993).  Teachers’ knowledge of fraction division is 

often limited to the invert-and-multiply procedure (e.g., Ball, 1990), which restricts 

teachers’ ability to provide a conceptual explanation of the procedure in classrooms 

(e.g., Borko et al., 1992; Contreras, 1997).  Because the meaning of division alone is 

not easy for pre-service teachers (e.g., Ball, 1990; Simon, 1993), fraction division is 

even more difficult (Ma, 1999).  Based on the findings from studies on teachers’ 

knowledge and difficulties with division and fraction division, it can be summarized 

that teachers often have the following five types of difficulties: 

(a) How to explain the computational procedure for “division of fraction” with 

different representations (e.g., Contreras, 1997; Ma, 1999) 

(b) How to explain why “invert and multiply” (e.g., Borko et al., 1992; Tzur & 

Timmerman, 1997) 

(c) Mathematical relationships between fraction division and other 

mathematical knowledge (e.g., fraction concept; addition, subtraction, and 

multiplication of fractions) (e.g., Ma, 1999; Tirosh, 2000) 

(d) Related misconceptions (e.g., can not divide a small number by a big 

number, division always makes a number smaller) (e.g., Greer, 1992) 

(e) Solving problems involving fraction division (e.g., Greer, 1992) 

The identification of these five types of difficulties provided a general framework for 

the current study and served as a guideline for examining the nature of prospective 

middle school teachers’ possible difficulties with fraction division. 

METHODOLOGY 

Subjects 

The participants were prospective middle school teachers enrolled in a mathematics 

and science interdisciplinary teacher education program at a southwestern U.S. 

university.  These prospective teachers were in their last stage of study in the program.  

They had already taken all of the required mathematics courses and were completing 

mathematics methods course at the time of their participation in this study.  A 
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majority of the participants were seniors with only a few juniors.  A total of 46 

prospective teachers participated in the study for data collection. 

Instruments and data collection 

Two instruments were developed for this study.  The first instrument was a survey of 

prospective teachers’ general knowledge in mathematics and pedagogy.  Many items 

were adapted from TIMSS 2003 background questionnaires (TIMSS 2003).  

The second instrument was a math test that focused on prospective teachers’ content 

knowledge and pedagogical content knowledge of fraction division.  It contained 

items targeted to prospective teachers’ possible difficulties as specified in the 

conceptual framework.  While some items were adapted from school mathematics 

textbooks and previous studies (e.g., Hill, Schilling, & Ball, 2004; Tirosh, 2000), 

others were developed by the researchers of the current study.  

All 46 prospective teachers enrolled in the mathematics methods course were invited 

to participate in this study.  The participants were notified that both the survey and 

the test were for research purposes only and should be completed anonymously.  The 

survey and the tests were administrated at the last class of the senior methods course. 

Participants were requested to complete the survey first, then the mathematics test.  

Data analysis 

Both quantitative and qualitative methods were used in the analysis of the 

participants’ responses. Specifically, responses to the survey questions were directly 

recorded and summarized to calculate the frequencies and percentages of 

participants’ choices for each category.  To analyze participants’ solutions to the 

problems in the mathematics test, specific rubrics were first developed for coding 

each item, and subsequently, the participants’ responses were coded and analyzed to 

examine their use of specific concepts and/or procedures.  

RESULTS AND DISCUSSION 

In general, the results presented a two-sided picture that illustrated the importance of 

examining and understanding prospective teachers’ knowledge in mathematics and 

pedagogy for teaching.   

On one side, the results from the survey indicated that (1) participating prospective 

middle school teachers in this sample knew about their state curriculum framework in 

general; (2) they were confident in the preparation they received in mathematics and 

pedagogy for future teaching careers; and (3) they had developed general pedagogical 

understanding for mathematics classroom instruction.   

On the other side, however, this group’s performance on the mathematics test 

revealed that their knowledge in mathematics and pedagogy for teaching fraction 

division was procedurally sound but conceptually weak.  The apparent inconsistent 

patterns in their responses suggested that these prospective teachers did not know 

what they would be expected in order to develop effective teaching.  Their confidence 
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was built upon their limited knowledge in mathematics and pedagogy.  The following 

sections are organized to present more detailed findings corresponding to the two 

research questions.  

Prospective teachers’ perception of their knowledge preparation in mathematics 

and pedagogy for teaching 

Prospective teachers’ responses to the survey were quite positive.  The following 

items were selected from the survey to illustrate prospective teachers’ perception of 

their knowledge preparation needed for teaching, as related to fraction division.  

For item 1: How would you rate yourself in terms of the degree of your 

understanding of the Mathematics Curriculum Framework in your state?  On a 

scale of four choices (High, Proficient, Limited, Low), 9% and 91% of the 

participants chose “High” and “Proficient”, respectively.  None of the prospective 

teachers perceived themselves to have limited or low understanding of their state 

mathematics curriculum framework.  

For item 4-(6): Choose the response that best describes whether students (grades 5-

8) in your state have been taught the topic - Computations with fractions.  In a 

scale of five choices (Mostly taught before grade 5, Mostly taught during grades 5-

8, Not yet taught or just introduced during grades 5-8, Not included in the state 

math framework, Not sure), 96% participants indicated that the topic of fraction 

division is “mostly taught during grades 5-8”, while the remaining 4% chose the 

first response (“Mostly taught before grade 5”).  This result, in conjunction with 

the participants’ response to question 1, suggested that this group of prospective 

teachers had general knowledge about their state’s mathematics curriculum.  

For item 5-(2): Considering your training and experience in both mathematics and 

instruction, how ready do you feel you are to teach the topic of “Number – 

Representing and explaining computations with fractions using words, numbers, or 

models?”  On a scale of three (Very ready; Ready; Not ready), 60% of the 

participants thought they were “ready”, while 38% chose “very ready” and 2% 

“not ready.”  The results indicated that this group of prospective teachers was 

confident in their preparation for teaching fraction computations, including fraction 

division.  This result was further supported by their general pedagogical 

understanding for teaching mathematics.  

In particular, item 6 on the survey contained several sub-items that examined 

participants’ attitudes toward mathematics teaching.  For example:  

To what extent do you agree or disagree with the following statement?  

(1) More than one representation (picture, concrete material, symbols, etc.) should be 

used in teaching a mathematics topic.  

(3) A teacher needs to know students’ common misconception/difficulty when teaching a 

mathematics topic.  

(9) Modeling real-world problems is essential to teaching mathematics. 
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With a scale of four choices (Agree a lot; Agree; Disagree; Disagree a lot), the 

following table summarizes the responses.  

Item Agree a lot Agree Disagree Disagree a lot 

6-(1) 89% 11% 0% 0% 

6-(3) 69% 27% 4% 0% 

6-(9) 78% 22% 0% 0% 

Table 1: Percentages of participating prospective teachers’ responses 

The results showed that this group of participating prospective teachers had 

developed a positive attitude toward mathematics teaching.  

In general, prospective middle school teachers’ responses to the survey suggested that 

they were confident in their preparation and they were ready to teach. In fact, these 

results are similar to what has been found from the US eighth-grade mathematics 

teachers in the TIMSS 2003 study (Mullis, Martin, Gonzalez, & Chrostowski, 2004).  

The consistency in responses between prospective teachers in the current study and 

US eighth-grade mathematics teachers in the TIMSS 2003 study suggests that US 

teachers develop their confidence quite early and hold their confidence for what they 

can do in teaching mathematics.  

The nature of prospective middle school teachers’ knowledge in mathematics 

and pedagogy for teaching fraction division 

The prospective teachers’ responses to the mathematics test allowed a closer look at 

the participants’ knowledge in mathematics and pedagogy for teaching, especially on 

the topic of fraction division.  Results indicated these prospective teachers did very 

well in computing fraction division.  For example, for the problem “find the value of 

3

2

9

7
÷ =”, 93% of the participants solved the problem correctly. However, when the 

problem was changed slightly with a conceptual requirement, their performance 

decreased.  As an example, to find “How many 
2

1
’s are in 

3

1
 ?”, only 52% answered 

correctly.  Many gave an answer as either “none” or “0”.  In fact, this problem is a 

typical problem in mathematics textbooks for middle school students.  These 

prospective teachers’ responses revealed their possible misconception related to 

division and their weakness in understanding fraction division in the verbal format. 

Moreover, these prospective teachers experienced difficulty in solving problems that 

involved fraction division, especially for some of the multi-step problems.  For 

example, only 39% participants solved the following problem correctly.  

Johnny’s Pizza Express sells several different flavors of pizza. One day, it sold 24 large-

size pepperoni pizzas. The number of large-size plain cheese pizzas sold on that day was 

4

3
 of the number of large-size pepperoni pizzas sold, and was 

3

2
 of the number of large-
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size deluxe pizzas sold. How many large-size deluxe pizzas did the pizza express sell on 

that day?  

The prospective teachers were also asked to explain given computations of fraction 

division.  In particular, the problem of “How would you explain to your students why 

3

1
2

3

2
=÷ ?; Why 4

6

1

3

2
=÷ ?” (adapted from Tirosh, 2000) was included in the test.  It 

was found that about 26% participants drew and used pictorial representations (e.g., 

fraction bar, pie chart) to explain the division procedure (e.g., how to divide 2/3 by 2 

to get the answer 1/3), and 22% explained with “flip and multiply.”  Most (46%) 

other participants failed to provide a complete explanation to both computations.  

Surprisingly, none of these prospective teachers tried to explain the computations as 

why you can flip and multiply (e.g., why you can transform “divide 2/3 by 2” to 

“multiply 2/3 by 1/2”).  

These participating prospective teachers seemed to have even more difficulty when 

the computation procedure for fraction division was presented in a different way.  In 

solving the following problem (adopted from Tirosh, 2000): 

You are discussing operations with fractions in your class. During this discussion, John 

says  

It is easy to multiply fractions; you just multiply the numerators and the denominators. 

I think that we should define the other operations on fractions in a similar way: 

Addition 
)(

)(

db

ca

d

c

b

a

+

+
=+  

Subtraction 
)(

)(

db

ca

d

c

b

a

−

−
=−  

Division 
)(

)(

db

ca

d

c

b

a

÷

÷
=÷  

How will you respond to John's suggestions? (Deal with each separately.) 

About 90% of the participants indicated that the given computations for fraction 

addition and subtraction were not correct, and only 2 out of the 46 prospective 

teachers stated that the given computation for fraction division was correct.  The 

majority of others stated that the fraction division should be “flip and multiply” or 

“KFC” (i.e., keep the first, flip the second, and change the sign).  The results 

suggested that these prospective teachers actually had very limited procedural 

understanding of fraction division, especially when related to other mathematical 

knowledge.  

The results from these prospective teachers’ responses on the mathematics test 

revealed their difficulties in all five types, as specified in the framework.  However, 

prospective teachers’ difficulties across these five types varied to a certain degree.  It 

appeared that these prospective teachers can do a relatively better job when their 

thinking and explanation are aided by drawing pictorial representation, a result that is 
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consistent with existing findings about US students’ preference in using visual 

representation (e.g., Cai, 1995).  However, performance became much less 

satisfactory when multiple mathematical relationships or mathematical ideas in an 

abstract format were presented.  

CONCLUSION 

The findings from this study show two different and seemingly contradictory sides of 

prospective teachers’ knowledge in mathematics and pedagogy for teaching.  The 

more positive perspective is revealed by the prospective teachers’ responses to the 

selected survey questions.  Certainly, these positive perceptions and attitudes can 

possibly help drive prospective teachers in their future efforts in developing effective 

classroom instruction.  At the same time, however, their positive perceptions and 

attitudes are likely built upon insufficient (or limited) mathematical knowledge and 

pedagogical knowledge in mathematics.  As revealed by their performance on the 

mathematics test, these prospective teachers had many difficulties with fraction 

division that they may not realize or recognize as deficiencies in their knowledge 

base.  It is not realistic to expect prospective teachers to determine by themselves 

what they need to learn for future teaching career.  Instead, as teaching mathematics 

requires a special set of skills (Viadero, 2004), it becomes necessary and important 

for teacher educators to identify what knowledge in mathematics and pedagogy 

prospective teachers need to learn through their program study. Ideally, prospective 

teachers would build their positive perceptions and attitudes upon their solid 

understanding of specific knowledge in mathematics and pedagogy for teaching.   
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IMPROVING STUDENTS’ ALGEBRAIC THINKING:  

THE CASE OF TALIA 

Kien Lim 

The University of Texas at El Paso 

 

This paper presents the case of an 11th grader, Talia, who demonstrated improvement 

in her algebraic thinking after five one-hour sessions of solving problems involving 

inequalities and equations. She improved from association-based to 

coordination-based predictions, from impulsive to analytic anticipations, and from 

inequality-as-a-signal-for-a-procedure to inequality-as-a-comparison-of-functions 

conceptions. In the one-on-one teaching intervention, she progressed from the 

sub-context of manipulating symbols, to working with specific numbers, to reasoning 

with “general” numbers, and eventually to reasoning with symbols. Three features 

were identified to account for her improvement: (a) attention to meaning, (b) 

opportunity to repeat similar reasoning, and (c) opportunity to explore. 

INTRODUCTION 

Research has shown that some students will spontaneously apply a procedure or 

algorithm as soon as they are given a mathematics problem. For example, Cramer, Post, 

and Currier (1993) observed 32 of 33 students in a mathematics methods class apply 

the proportion algorithm to solve this problem: Sue and Julie were running equally fast 

around a track. Sue started first. When she had run 9 laps, Julie had run 3 laps. When 

Julie completed 15 laps, how many laps had Sue run? Without appearing to understand 

the underlying structures, many students inappropriately apply procedures taught to 

them; Fischbein and Barash (1993) call this improper application of algorithmic 

models. Errors such as thinking that 
2
1

52
53
=

+

+

ca
ba  ⇒ 

2
1

2
3

=
+

+

c
b  and (x – 6)(x – 9) < 0 ⇒ x < 6 

or x < 9 are rather common among algebra students (Matz, 1980). Many students fail to 

make the connection between structural conception and operational conception (Sfard, 

1991). For example, they interpret an equation as an object to be transformed into 

“x = ___”. The only source of meaning is the rules for solving the equation (Sfard & 

Linchevski, 1994). Without conceiving an equation as a relation, high school and 

college students may interpret the equal sign as a signal to do something—for example, 

to solve for a variable or to find its derivative (Kieran, 1981). Consequently, students 

exhibit non-referential symbolic reasoning (Harel, in press) when they operate on 

symbols as if “the symbols possess a life of their own” without attending to referential 

meaning.  

The research that this paper reports sought to characterize the way students anticipate 

as they solve non-routine problems involving algebraic inequalities and equations.  

I define anticipating as a mental act of conceiving a certain expectation without 

performing a sequence of detailed operations to arrive at the expectation. This research 
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had three objectives: (a) to identify and characterize students’ anticipations, (b) to 

identify the relationship between the characteristics of students’ anticipations and 

students’ interpretation of inequalities/equations, and (c) to explore the potential for 

advancing the way students anticipate. Results related to the first two objectives were 

presented in the 28
th
 PME-NA conference (Lim, 2006). This paper presents results 

related to the third objective. 

THEORETICAL FRAMEWORK 

This research was based on several theoretical constructs: Piaget’s (1967/1971) notion 

of anticipation, von Glasersfeld’s (1998) three general kinds of anticipation, and 

Cobb’s (1985) three hierarchical levels of anticipation. In addition, Harel’s (in press) 

notions of way of understanding and way of thinking were employed to analyse 

students’ act of anticipating.  

According to Piaget (1967/1971), anticipation is one of the two functions of knowing; 

the other function being conservation-of-information, an instrument of which is a 

scheme. The anticipation function deals with the application of a scheme to a new 

situation. It allows us to strategize and plan, have foresight, make predictions, 

formulate conjectures, engage in thought experiments, etc. Foresights and predictions 

are possible because of our ability to assimilate situations into our existing scheme(s); 

“anticipation is nothing other than a transfer or application of the scheme … to a new 

situation before it actually happens” (p. 195).  

von Glasersfeld (1998) elaborated on Piaget’s notion of anticipation by pointing to 

three general kinds of anticipation: (a) implicit expectations that are present in our 

actions, e.g., the preparation and control of our movements when we grope in the dark; 

(b) prediction of an outcome, e.g., predicting that it will soon rain upon noticing that 

the sky is being covered by dark clouds; and (c) foresight of a desired event and the 

means for attaining it, e.g., a child’s anticipation of the capitulation of his parent if he 

were to throw a temper tantrum in public. In this research, I focused on the latter two 

kinds of anticipation. I define predicting as the act of conceiving an expectation for the 

result of an event without actually performing the operations associated with the event, 

and foreseeing as the act of conceiving an expectation that leads to an action, prior to 

performing the operations associated with the action.  

Cobb (1985) identifies three hierarchical levels of anticipation: beliefs, 

problem-solving heuristics, and conceptual structures. At the global level, students’ 

beliefs about mathematics influence their anticipations. At the intermediate level, a 

child anticipates a heuristic—“a metacognitive prompt which delimits a subcontext 

within which the child anticipates she can elaborate and solve the problem” (Cobb, 

1985, p. 124). For example, anticipation of a guess-and-check strategy may lead a 

student to operate in the sub-context of plugging in numbers. At the most specific level, 

a child’s expressed conceptual structures (i.e., evoked schemes) dictate the child’s 

anticipations. According to Cobb, higher-level anticipations constrain lower-level 
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anticipations, i.e., students’ specific anticipations are confined both by their beliefs and 

by the sub-context in which they operate. 

I used Harel’s (in press) MA-WoU-WoT framework to analyse students’ mental acts 

(MAs) of predicting and foreseeing. Predicting and foreseeing are among the many 

mental acts that one might carry out while solving a mathematics problem. Other 

mental acts include interpreting, symbolizing, generalizing, justifying, and inferring. A 

way of understanding (WoU) refers to the product of a particular mental act, and a way 

of thinking (WoT) refers to a character of this act. Taking the act of predicting as an 

example, a WoU refers to the result a student actually predicts whereas a WoT 

characterizes the manner in which the student predicts. Likewise, students’ 

interpretations of inequalities/equations can be viewed as WsoU associated with the act 

of interpreting inequalities/equations. 

METHOD 

This research was conducted in a university-based charter school in Southern 

California. Fourteen 11
th
 graders were interviewed, each for about 60 minutes. Four of 

these interviewees participated in a one-on-one teaching intervention, which involved 

five problem-solving sessions followed by a post-interview.  

Tasks used in the clinical interviews include: (a) Is there a value for x that will make 

(2x – 6)(x – 3) < 0 true? (b) Given that 5a = b + 5, which is larger: a or b? And (c) 

Given that m is greater than n, can m – 14 ever be equal to 7 – n? These tasks differ 

from typical tasks in textbooks in that they do not direct students to perform a specific 

task such as “solve for x” or “simplify.” I found this non-directive feature effective at 

eliciting a variety of anticipatory behaviours. All the tasks were phrased in the form of 

a question so that students could predict the answer, if they chose to, prior to 

performing any actions. Tasks used in the teaching intervention involved only one 

variable. This way, participants’ responses to two-variable tasks in the post-interview 

allowed me to see whether the improvements in their WsoT and WsoU went beyond the 

context in which these WsoT and WsoU were learned.  

The designing, sequencing, and assigning of tasks in the teaching intervention were 

guided by the three primary pedagogical principles in Harel’s DNR-based instruction 

(2001, in press). The Duality Principle asserts that the WsoT students possess influence 

the WsoU they produce, which in turn influences the development of their WsoT. The 

Necessity Principle stipulates that for students to learn a particular concept, they must 

have an intellectual need for it. The Repeated-reasoning Principle asserts that 

“students must practice reasoning in order to internalize, organize, and retain” what 

they learn.  

All the interviews and problem-solving sessions were videotaped and transcribed. 

Observation concepts (Clement, 2000) for students’ WsoT associated with 

predicting/foreseeing and students’ WsoU inequalities/equations were identified. 

Categories for WsoT and WsoU were derived from the data using a constant 
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comparative approach (Glaser & Strauss, 1967), in which categories were constantly 

revised by comparing current data with previously analysed data. The analysis 

involved identifying instances of the mental acts of predicting and foreseeing (inferred 

from student’s actions and statements), generating, comparing, and refining categories 

for WsoT and WsoU, and consolidating and collapsing some of the categories. For each 

of the four learners, a table of codes was created to track the changes from the 

pre-interview to the post-interview in: (a) the learner’s WsoT associated with 

predicting/foreseeing, (b) WsoU inequalities/equations, (c) sub-context in which the 

learner was operating, and (d) quality/correctness of solutions. Episodes of all five 

problem-solving sessions for the learner Talia were analysed to gain a general sense of 

her ways of thinking and ways of understanding. I later revisited the data to account for 

significant transitions as well as to account for the change in her ways of thinking and 

ways of understanding.   

RESULTS AND DISCUSSION 

In this study, three ways of thinking associated with predicting were identified: 

association-based prediction, comparison-based prediction, and coordination-based 

prediction. Five ways of thinking associated with foreseeing were identified: impulsive 

anticipation, tenacious anticipation, explorative anticipation, analytic anticipation, 

and interiorized anticipation. In addition, five ways of understanding 

inequalities/equations (I/E) were identified: I/E-as-a-signal-for-procedure, 

I/E-as-a-static-comparison, I/E-as-a-proposition, I/E-as-a-constraint, and 

I/E-as-a-comparison-of-functions. Students’ WsoT associated with 

predicting/foreseeing were found to be related to the quality of their solutions as well 

as to the sophistication of their WsoU inequalities/equations. These results are 

presented in PME-NA (Lim, 2006). In this paper, I focus on Talia’s improvement from 

pre-interview to post-interview, her trajectory from the sub-context of manipulating 

symbols to the sub-context of reasoning with symbols, and some features of the 

teaching intervention that might account for her improvement.  

Talia’s Pre-to-post-interview Improvement 

In the pre-interview, Talia was operating in the sub-context of manipulating symbols 

for single-variable tasks. While operating in this sub-context, she tended to be 

procedure-oriented and thus exhibited impulsive anticipation. For the task, “Is there a 

value for x that will make the following statement true? (2x – 6)(x – 3) < 0”, she 

spontaneously expanded the expression without studying the inequality, used the 

quadratic formula, obtained 
2

)9)(1(466 2
−± , and commented “that reduces to 3, which is less 

than 0 (wrote 3 < 0). That’s not true.” Her not attending to the meaning of the symbols 

contributed to her exhibiting association-based prediction. She predicted that 3 was 

not a solution because she saw 3 < 0 was false. Her prediction was based on her 

associating the result of 
2

)9)(1(466 2
−±  with the output of x

2
 – 6x + 9; i.e., she conflated the 

root of a quadratic function with the function itself. When she plugged 3 into the 
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inequality and obtained 0 < 0, she predicted that 6 might be a solution: “Maybe I’m 

supposed to multiply by 2.” Because of her association between the value of 
2

)9)(1(466 2
−±  

and the function x
2
 – 6x + 9, she thought she should double the resulting value of 3 so as 

to compensate for halving 2(x
2
 – 6x + 9) to get x

2
 – 6x + 9.  

In the post-interview, Talia was operating in the sub-context of reasoning with symbols. 

While operating in this sub-context, she tended to be goal-oriented, and thus exhibited 

analytic anticipation.  

Talia: Um, 2x minus 6 times x minus 3 is less than 0. So … this [side] has to give 
me a negative number. I can get a negative number from here  
(2x – 6), oh, but there is also a negative times negative is positive. So I have 
to make one of these negative and one of these positive. In order to get this, 
so this will be negative if it is less than 6, but then if I want to make this one 
positive, it has to be greater than 3. So, or I could go the other way around. 
… This side could be, umm, greater than 6, x could be greater than 6, makes 
this positive, 2x, I’m sorry, 2x [could be greater than 6]. And x could be less 
than 3, which will make this negative, and so these two conditions will 
make this statement true. 

Talia analysed the inequality with the goal of making the function (2x – 6)(x – 3) less 

than zero, and she foresaw the sub-goal of making one factor positive and the other 

negative. Talia’s pre-to-post-interview improvement, as depicted in Figure 6.1, is 

considered significant because only 2 out of the 16 inequalities/equations used in the 

teaching intervention involved quadratic functions in factored form. Moreover, both 

inequalities, x(6x + 8) < 0 and 3x(500 – 2x) < 30(500 – 2x), do not involve repeated 

roots.  

     

Figure 6.1: Pre-and-post-interview comparison of Talia’s work 

When working on two-variable tasks, Talia demonstrated more instances of 

coordination-based prediction and analytic anticipation in the post-interview than in 

the pre-interview. For example, she exhibited only one instance of comparison-based 

prediction in the pre-interview, but two instances of coordination-based prediction and 

one instance of comparison-based prediction in the post-interview for this task: “Given 
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that 5a = b + 5, which is larger: a or b?” In the pre-interview, her prediction appeared 

to be based on a comparison between the two sides in terms of their arithmetic 

operations: “if a and b were equal, then a would be larger because, I mean this (5a) 

value would be larger.” In the post-interview, her prediction, though still incorrect, 

incorporates change and compensation: “b will have to be larger, just because you need 

more adding than you do multiplying in order to get [b + 5] large.”  

Talia’s Trajectory from Manipulating-symbols to Reasoning-with-Symbols 

Talia’s transition from the sub-context of manipulating symbols to the sub-context of 

reasoning with numbers involved two intermediate stages: working with specific 

numbers and reasoning with general numbers (e.g., large positive numbers, small 

positive numbers, and negative numbers). In the first problem-solving session, when 

Talia was presented with the inequality 0
10
5
<

−

−

x
x  with no accompanying instruction, she 

interpreted the inequality as a signal to solve for x.  

Lim: Alright, this ( 0
10
5
<

−

−

x
x ) is the first problem. 

Talia: OK. So I just solve it? Alright, arrr, so I’m trying to solve for x. So I’m just 
going to multiply both sides by x minus 10, x minus 10, and it’s x minus 5 is 
less than 0. And then you just add 5 to both sides. x is less than 5. Um, I 
think that’s my answer. 

Lim: What does this answer (x < 5) mean? 

Talia: Um, that, this equation is true for any value of x that are less than 5, so, let 
me just try that out. So, 4 minus 5 over 4 minus 10.  

Having found that x = 4 did not make the inequality true, Talia continued to think of 

alternative means for manipulating the inequality: “How am I supposed to solve this? 

Um, maybe I can factor something out.” It was only when she was asked, “What does 

solve for x mean?” that she attended to meaning and responded, “To find the values for 

this problem where the statement is true.” She then foresaw plugging in numbers. 

Talia: So, umm, I’m just going to try some random values for this, 2. 2 minus 5 is 
-3. 2 minus 10 [is] -8. Umm, it has to be a number that is positive on the top 
and negative on the bottom, so I can get a negative number, and then the 
statement will be true. So, something that will give me positive is 6 minus 5, 
and 6 minus 10. This is…positive 1, over negative, um, 10, 3 4 5 6 (finger 
counting), 4 and that’s less than 0. So one-fourth is a value that makes this 
statement true. … I’m sorry, 6. 

Within the context of working with specific numbers, Talia could reason in a 

goal-oriented manner and foresaw plugging in 6 to make the numerator positive and 

the denominator negative. She even extended her reasoning to obtain all the values that 

would make the inequality true: “So x can be anything that is, um, bigger than 5, but 

less than 10. So 6 7, 6 7 8, 9.” 

The change in sub-context from manipulating symbols to plugging in numbers was 

probably initiated by questions such as “What does this answer mean?” and “What 

does solve for x mean?” This implies that mathematics teachers should help students 

attend to meaning.  
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The transition from working with specific numbers to reasoning with general numbers 

occurred in Talia’s initial response to the second task: “Is x(6x + 8) < 0 always true, 

sometimes true, or never true?” 

Talia: Is x [times] quantity of 6x plus 8 less than 0 always true, sometimes true, or 
never true? Mmm, I’m thinking if I make x into a negative number so that, 
um, so that the whole function will be negative. So if there is an answer, it 
will probably have to be negative because if I make x positive, it’s going to 
be greater than 0 all the time. Right? … OK. Um, so let me just try a 
negative number, -1. 

In this task, Talia began to reason with general numbers: x being positive would make 

the inequality “greater than 0 all the time.” The transition from working with specific 

numbers to working with general numbers might be due to the inequality having x as a 

factor. An implication for teaching is that instructional tasks should be designed to 

allow students to apply, and then extend, their ways of understanding. The quadratic 

inequality x(6x + 8) < 0 is considered a good follow-up to the rational inequality 
5

0
10

x

x

-
<

-
 because the two functions are structurally different, yet they both foster the 

same way of thinking: being goal-oriented so as to make one factor positive and one 

factor negative. Hence, assigning x(6x + 8) < 0 as the second task is consistent with the 

Repeated-reasoning Principle (Harel, 2001). 

The transition from reasoning with general numbers to reasoning with symbols began 

with the above task and continued through the entire teaching intervention. Reasoning 

with symbols involves certain ways of understanding, emergence of which required 

Talia to explore the problem situations by plugging in specific numbers and/or 

reasoning with general numbers, such as a number in the interval [-1, 0]. This 

observation suggests that mathematics educators should use reasoning with numbers as 

a platform for students to explore algebraic structures. I contend that Talia’s 

undesirable ways of thinking—such as non-referential symbolic way of thinking and 

association-based prediction—probably resulted from her working with algebraic 

symbols without the support of numbers. A lack of numerical support for algebraic 

reasoning is a plausible cause for why some students perceive the world of algebra and 

the world of arithmetic to be disconnected, a phenomenon observed by Lee and 

Wheeler (1989).  

CONCLUSION 

The case of Talia demonstrates the feasibility of helping students improve their 

algebraic thinking—in particular, moving from manipulating symbols in a 

non-referential symbolic manner to reasoning with symbols in a goal-oriented manner, 

from association-based prediction to coordination-based prediction, and from 

impulsive anticipation to analytic anticipation. This research underscores the 

importance of helping students attend to meaning, creating opportunities for students 

to repeat certain reasoning, and using numbers as a platform for students to investigate 

algebraic expressions and structures.  
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THE EFFECT OF A MENTORING DEVELOPMENT PROGRAM 
ON MENTORS’ CONCEPTUALIZING MATHEMATICS 

TEACHING AND MENTORING   

Pi-Jen Lin 

National Hsinchu University of Education, Taiwan 

 

ABSTRACT 

The study was to develop a mentoring program and examine its effect on mentoring 

mathematics teaching. A collaborative mentor study group consisting of four mentors 

and the researcher was set up. The course with 78 hours to develop mentors’ 

theoretical and professional knowledge in which underpins mentoring practice was 

carried out in the half-year internship. Two surveys, pre- and post-test of pedagogy, 

self-assessment in mentoring, interview, classroom observation, and reflective 

journal were the data collected for the study. The satisfaction with the initiates, 

improvement of mentoring knowledge, and the transfer from the program to support 

interns on questioning, problem-posing, and anticipating students’ solutions were as 

a result of the mentoring program.       

INTRODUCTION 

Mentoring as a reform is increasingly used in both preservice programs. 

Socioculturalists agree that mentoring has greater potential to support teacher 

learning since knowledge is situated in and grow out of the contexts of mentors use. 

With support of a mentor working intern’s zones of proximal development, the intern 

can learn to perform beyond his/her independent performance level. This is relevant 

to the issue of effective mentoring. In recent years, teacher education programs have 

been encouraged to devote more attention to developing partnerships with schools 

and helping teachers become equipped to mentor interns (Sutherland, Scanlon, 

Sperring, 2005). The reformers regard the university-school partnership with the 

mentor-novice relationship in the context of teaching as one of the important 

strategies to support novices’ learning to teach, thus, to improve the quality of 

teaching (Odell, Huling, & Sweeny, 1999). A great deal of research on mentoring has 

identified a wide range of qualities needed (Wang & Odell, 2002). For instance, 

essential prerequisites include supporting the development of effective classroom 

practice. This indicates that mentors should be supported to meet the quality of 

mentoring. Thus, there is a need for a teacher education associated with a school to 

develop a mentoring development program to support mentors on interns’ learning.  

Due to the rapidly increased number of preservice teachers has overloaded the 

teacher education system in Taiwan. One of the shortcomings of the system is the 

lack of specific subject mentoring by faculty during the internships in schools. With a 

heavy mentoring load and widespread geographical locations of interns mentored, 
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much of the responsibility for mentoring interns lies with the mentors in the schools 

rather than with teacher educators. Moreover, most of the elementary school teachers 

teach several subjects, it leads to require interns to have teaching in all the subject 

areas. However, this requirement might not have been fulfilled completely because 

the mentors had little knowledge or different ideas in their minds about the roles of 

the interns in teaching mathematics (Lo, Hung, & Liu, 2002). To improve the quality 

of mentoring, a mentor development joint research project including mathematics, 

language, and science, as an innovative approach, was initiated at a university 

associated with a school. The aim of the joint project is to train professional subject 

mentors and to improve interns’ teaching in all subjects. This study involving 

mathematics as one of the three sub-projects contained in the joint project was 

intended to develop a mentoring development program that was designed to develop 

both mentors conceptualizing mathematics teaching and practicing for mentoring 

interns. The effect of the program on mentors’ conceptualizing and practicing in 

teaching and mentoring will be examined in the study. 

Theoretical Framework of the Mentoring Development Program 

The theoretical framework of mentoring to support interns learning to teach is based 

on three models of mentor preparation in which are widely used in both preservice 

programs. The knowledge transmission model assumes that knowledge of mentoring 

comes from research rather than from mentors’ own experiences and practices, so that 

such knowledge can be transmitted to mentors in the form of discrete concepts and 

skills. Although this model helps mentors to develop many mentoring skills and 

techniques, there is no evidence that mentors are able to apply such learning in their 

practice with interns (Evertson & Smithey, 2000).  

The theory-and-practice connection model assumes that knowledge of mentoring 

comes both from research and mentors’ practical knowledge, so that mentoring skills 

and knowledge should be actively constructed by mentors and then through 

integration of their practical knowledge of teaching and learning, with the support of 

teacher educators. This model, unlike the transmission model influences mentors’ 

sensitivity the needs and problems of interns. This model, teacher educators are still 

distant from actual mentoring practice (Wang & Odell, 2002).  

The collaborative inquiry model stresses mentors’ active construction of mentoring 

knowledge through the integration of their practical knowledge of teaching, the 

application of what they have learned in practice and constant dialogue with teacher 

educators. The distinction of this model from the theory-and-practice connection 

model in that teacher educators work with mentors and interns residing in the context 

of teaching and mentored learning to teach. Through this process, the teacher educator 

helped to deepen the mentor’s understanding of practice. This model not only values 
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mentors as learners who actively inquiry into teaching and mentoring but also views 

teacher educators as learners who examine and develop the knowledge and skills of 

mentoring in the context of teaching and mentoring. In this model, mentors, interns, 

and teacher educators are all researchers, learners, contributors of knowledge related 

to teaching and mentoring.  

The effects of each model on mentoring are likely to be different. The mentoring 

development program with university-school partnership developed in this study 

takes the assumption of collaborative inquiry model that knowledge and skills of 

mentoring are constructed through practice-centered conversation and collaborative 

inquiry with a community of mentors in the contexts of teaching and mentoring. 

METHOD 

Study Context 

In developing the program to enhance mentor development, the main consideration 

was dependent on the willing of the mentors and interns. There was no agreement 

that enabled them to be remunerated for their participation. When developing the 

activities involved in the study were conscious of the need to maximize the interns’ 

involvement in the internship while at the same time minimizing the disruption this 

participation might cause the mentors and the school.  

Four teachers (Yeu, Lang, Ju, and Zue) from an elementary school met regularly with 

a teacher educator (the researcher) from a university supervising interns (Huei, Ting, 

Jong, and Jun) to investigate collective experiences with mentoring. The half-year 

placement plan enabled four interns to be placed to the school during the study. The 

researcher was assigned for four hours per week as the university program liaison 

responsible for interns’ supervision at the school.  

The Mentoring Development Program  

The goal of the program was to create the opportunity of support mentors learning in 

mentoring such that enhancing the quality of teacher education offered at the 

university by providing the interns with greater involvement with mentors. The 

course of the program was designed to develop mentors’ theoretical and professional 

knowledge in which underpins mentoring practice. The theoretical knowledge 

provides mentors with an understanding of designing principles and gives rise to the 

professional knowledge when mentors enact it in implementing tasks in classrooms 

(Shulman, 1998). The two components integrated into the course containing 78 hours 

with twenty six 3-hour units were implemented at two stages: (i) a summer workshop 

with 36 hours containing twelve 3-hour sessions (ii) school-year initiates with 42 

hours containing fourteen 3-hour sessions in a half year. Table 1 introduces the 

contents, units, and periods of the workshop of the course.  
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During the half-year internship, a collaborative mentor study group (CMSG) 

consisting of the research and four school teachers was set up. To provide the support 

of learner-oriented teaching and mentoring to the mentors, the structure of the 

activities was developed. The lessons of the mentors were scheduled to be observed 

twice in turn. The first of which was to enable each mentor to watch a pair of 

mentor-intern preparing a lesson, how to carried out the lesson, and de-briefing 

conversation between them on the lesson. The CMSG met routine weekly with 3 

hours allowing mentors mutually support to learn from one another’s mentoring in 

preparing a lesson, observing, and reflecting on a lesson. The intern was asked by the 

observed mentor to identify areas which she felt more problematic in implementation 

and reflection on the lesson. Each weekly meeting was audio and video taped. 

# of units in workshops 
Contents of the course # of units 

Summer School-year 

Pedagogy of mathematics contents 7 3 4 

Assessment of mathematics  2 1 1 

Design of mathematics activities 3 0 3 

Classroom observation 1 1 0 

Use of teaching aids 2 1 1 

Management of mathematics classroom 1 1 0 

Mentoring practices 9 1 8 

Professional development and reflection 1 0 1 

Totally 26 8 18 

Table 1: Contents, units, and period of workshops of the course of the mentoring program 

 

The researcher, as a learning partner of the mentors, played the roles in facilitating, 

probing, and giving feedback to the mentors and created the opportunity for the 

mentors to discuss how to maximize the opportunities of the interns’ learning. The 

researcher believes that mentors’ knowledge of mentoring is actively constructed 

through the integration of practical knowledge of teaching and experience of learning 

via social interaction.  

Data Collected and Analyzed 

Kirkpatrick and Kirkpatrick’s (2006) model was the basis of the study to examine the 

effect of the mentoring program. At the reaction level, the mentors were interviewed 

on the feedback of summer workshop and half-year school mentoring activities for 

measuring what they thought and felt about the program. At the learning level, 

pre-test and post-test were conducted aligned with self-assessment 5-scale 

questionnaire professional standards, which was built in previous year of the study 

(Lin & Tsai, 2007), to assess the extent to which mentors change attitudes, improve 
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knowledge and skill. The instrument with 15 items consisted of 5 items for assessing 

knowledge of content, 5 items of pedagogical knowledge, and 5 items of knowledge 

of students’ cognition. The constructed validity and reliability of the questionnaires 

has been examined in previous study (Lin & Tsai, 2007). At the behavior level, 

classroom observation, interview, and mentors’ mathematics journal were measured 

how mentors transferred their knowledge and skill in mentoring as a resulted of the 

mentoring program. Each mentor was also conducted individually with a 

semi-structure interview. The interview included questions about their views of 

teaching and mentoring, their mentoring practices as well. For the purpose of the 

study, only some parts of the data in the interview were used.  

RESULT 

Reaction Level: : : : Satisfaction of the Course of the Program m m m  

Table 2 describes the mentors’ satisfaction of the activities of the half school-year 

initiates. They not only had a consistent agreement on the importance but also had a 

satisfaction with the topics including pedagogy, observation, and sharing practice of 

mentoring conducted in summer workshop. Nevertheless, for them, classroom 

arrangement is not as important as other topics. Zue commented that  
…I have already developed my own way of classroom management through years of 

teaching experience. General classroom management is not needed at this moment. Instead, 

to create the norms of students’ discourse in mathematics classroom is my weakness so that 

it is hard for me to start. I finally realized the significance of instructor’s role of playing 

students’ discussion from this summer workshop. … (Zue, Interview).   

Importance Satisfaction 
Contents of the course 

Mean SD Mean SD 

School-year workshop on mathematics teaching 

Understanding the logic sequence of activities 4.0 0 4.5 0.5 

Enhancing teachers’ ability in questioning 4.0 0 4.25 0.83 

Enhancing teachers ability in problem posing 4.0 0 4.25 0.83 

Designing lesson plan 4.0 0 3.75 0.83 

Social mathematics norms 4.0 0 3.5 0.87 

Diagnosing students’ misconception and remedy 3.75 0.43 3.75 0.83 

School-year workshop on mentoring teaching 

Observing peers’ lessons 4.0 0 4.0 1.0 

Working with intern on lesson plan 3.75 0.43 4.5 0.5 

Observing mentor-intern mentoring on lesson plan 3.75 0.43 4.25 0.83 

Working with other mentors on lesson plan 3.75 0.43 4.5 0.5 

Discussing with intern in post-lesson 3.25 0.43 3.5 0.5 

Discussing with the CTSG after their own teaching 4.5 0.5 4.5 0.5 

Discussion with the CTSG after peer’s teaching 3.75 0.43 4.0 1.0 

Table 2 Mentors’ Satisfaction of the Course of Mentoring Program 
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Two kinds of activities engaged in the CMSG were to foster mentors’ knowledge of 

teaching and mentoring in teaching, as described in Table 2. Of the knowledge of 

mathematics pedagogy, the mentors had a consistent agreement on the importance of 

mentoring activities including the logic structure of activities, enhancing skills of 

questioning, and problem posing. Ju reflected on fraction teaching as follows. 
…Although having 14 years of teaching, I have never realized various meanings of fraction. 

In the workshop, I know the various meanings of fraction including part-whole model, 

iteration of unit, a value of number line, operator, and ratio. There is a different degree of 

difficulty for students learning among them. …(Ju, Interview).  

The mentors had the least satisfaction with the work of social mathematics norm 

(Mean=3.5), although they agreed the importance of the social mathematics norm of 

a learner-oriented approach. The data of Table 2 shows that the mentors were satisfied 

with the mentoring in teaching, in addition to lesson plan working with intern 

(Mean=3.5). Lang expressed her opinion on lesson plan working with intern as 

follows.   

…prior to my teaching, I worked a lesson plan with Jong. Initially, I asked him to read 

textbook and searching for relevant resources of teaching in advance. In the lesson plan 

meeting, he grasped the objective of each activity, but he was not aware of the need of 

adaptation of the activities covered in the textbook. While planning a lesson, Jong did not 

attend to the importance of anticipating students’ possible strategies and posing a contextual 

problem.…. (Ju, Interview). 

Learning level: The Extent to Which Mentors Improved Knowledge and Skill.  

Comparing the pretest, the mentors had a better performance than on posttest of 

knowledge. The percentages of pre- and post-test four mentors Yeu, Lang, Ju, and 

Zue performed were from 40% to 73%, from 53% to 86%, from 40% to 80%, from 

40% to 67%, respectively. The result indicates that the mentors improved their 

content knowledge, pedagogical knowledge, and had better understanding of 

students’ learning, but they still had a space to improve continually their knowing 

about teaching. The data also shows that the mentors had very poor understanding of 

the logic structure of activities performed in the pre-test. With the mutual support of 

the CMSG, they gradually constructed the structure of teaching in specific topic.  

Self-assessment of confidence in mentoring is the indicator of improving mentors’ 

knowledge and skill in mentoring. Before entering the program, the mentors had no 

confidence in performing 9 items out of 16 items of professional literacy, 20 items 

out of 34 items of mathematics teaching, and 24 items out of 36 items of mentoring 

practice, respectively. With the help of the program, they gained more confidence in 

mathematics teaching and mentoring their interns. The items they had no confidence 

in performing were from 53 decreasing to 15 items including 9 items of teaching and 

6 items of mentoring teaching. Their improved knowledge and skill of questioning 

and problem-posing was also supported by their reflective journals. 
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…in terms of asking key question, I know it is important to clarify students’ thought but I 

had an anxiety with this after summer workshop. With the help of classroom observation, I 

know that it is important to give students longer time to think about the question I asked. 

Before entering the program, most of the questions I asked were too closed to stimulating 

students’ various solutions (Lang, Journal).    

Behavior Level: Transfer occurred in Interns’ Teaching Mentored by Mentors   

Classroom observation was measured how mentors transferred their knowledge and 

skill in mentoring interns’ teaching as a result of the program. As observed, the 

mentors not only improved their pedagogical knowledge but also enhanced their 

ability in transferring to guide interns’ on problem-posing, asking key questions, and 

anticipating students’ possible solutions. Yeu reminded Huei of connecting to 

students’ daily context while giving students a problem to solve. 

…I worked with my intern on reviewing the structure to examine whether the problems 

given in teacher guide are relevant to students’ daily life. I suggested them keep the 

objective of the lesson but using more attractive problems to replace the de-contextualized 

problems if needed. … (Yeu, CMSG meeting).     

The four interns’ performing in teaching is one of the indicators of examining the 

effect of the mentoring program. Each intern’s lesson was assessed by eight assessors 

consisting of the researcher, four mentors, and three interns. The average score of 

each of the 10 items of classroom behavior for each intern was listed in Table 3. The 

data shows that excepting the item of encouraging students to figure out various 

solutions and comparing them, they performed well in other items of teaching 

behavior. The average score of each item has greater than 4.0. The result indicates 

that mentors’ mentoring in interns’ knowledge and skill dealing with encouraging 

students to figure out solution is not so easy as other teaching skills.  

Teaching behaviors  Huei Ting Jong Jun Mean 

1. Drawing students’ attention by using various strategies 3.7 4.8 4.5 4.6 4.4 

2. Appropriateness of using teaching aids (e.g. technology). 3.6 4.9 4.9 4.6 4.5 

3. Asking key questions to support students’ thinking. 3.8 4.4 4.1 4.5 4.2 

4. Posing problems relevant to students’ daily life. 4.3 4.4 3.5 4.5 4.2 

5. High interaction with students. 3.6 4.9 4.5 4.0 4.3 

6. Encouraging students’ to figure out various solutions  4.1 3.6 4.1 3.9 3.9 

7. Enable to diagnose students’ difficulty and 

misconception. 
3.6 4.3 4.3 3.8 4.0 

8. Giving students’ feedback at a right time. 3.9 4.7 4.4 4.1 4.3 

9. Giving a creative teaching. 3.3 4.9 4.8 4.8 4.5 

10. Reaching the objective of the lesson. 3.4 4.1 4.3 4.4 4.1 

Table 3: The average score of each item of teaching behavior for each intern 

DISCUSSION 

One of the challenges of mentoring was to provide mentors with opportunities for 

authentic experiences. Through the university-school partnership, the mentors and the 



Lin  

PME31―2007 3-208 

teacher educator created more opportunities of the dialectics and justification 

between theory and practice of mentoring in mathematics teaching. This study 

supporting mentors to engage with the practice provided an example of innovative 

method of mentoring on conceptualizing mentoring and practicing, and then 

enhanced the interns learning to teach. For the mentoring development program to be 

successful, it was required the willing participation of the mentors who were asked to 

accept an extra load by assisting the interns. Besides, the course structure of the 

program provided opportunities for the mentors to relate the theoretical knowledge 

and the practical mentoring. In these experiences, the mentors were not focused on 

the technical skills of mentoring. Instead, they were engaged in meaningful 

professional-related tasks. Engaging in meaningful tasks appeared to facilitate the 

development of the mentors professional knowledge and skill in teaching and 

mentoring. They were able to relate the theory offered by the teacher educator to the 

practical needs of mentoring. In this way, the theory or model of mentoring became 

more meaning for the mentors.    

This study also suggests that collaborative mentor study group with offered one 

promising avenue for supporting mentors learning in teaching and mentoring. 

Although focused on developing mentors’ understating about and practice of 

mentoring in mathematics teaching, this study also provided an example of the kind 

of professional learning to promote inquiry-oriented practice more generally. The 

teacher educator and the mentors jointly constructed understanding of mentoring 

practice by fostering interactive conversation around artifacts of mentoring practices, 

developed out of the practice of CMSG participants,  
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USES OF EXAMPLES IN GEOMETRIC CONJECTURING 

Miao-Ling Lin and Chao-Jung Wu   

Taipei County Yong Ping Elementary School / National Taiwan Normal University 

 

We present 24 sixth graders’ conjecturing when given geometric conditions. We have 

provided simultaneously three different graphs: typical, conjunctive, and extreme 

examples. The students were asked to guess what other geometric invariance has to 

exist. We discovered that the students would generate more related conjectures if they 

looked at one example instead of two or three at the same time in the first minute after 

each question begins. They would generate more conjectures if the example were 

conjunctive example. However, the percentage of related-correct conjunctions is less 

than observing typical examples. The quantity and quality of conjectures decreases 

when students look at extreme examples that have bizarre shapes or scales. We also 

discovered that the activating of relational schema is related to the conjecturing. 

INTRODUCTION 

Mathematics is regarded by many as a demonstrative science, but Polya thinks that the 

formation of mathematics has no differences from any other knowledge. He pointed 

out all knowledge include mathematics consisting of conjectures. You have to guess a 

mathematical theorem before you prove it. If the learning of mathematics reflects to 

any degree the invention of mathematics, it must have a place for guessing and 

plausible reasoning (1954, Vol. I, pp. v –vi). Lakatos (1976) and Boero, Garuti, and 

Mariotti (1996) also share the same opinion. They believe that the first step of 

“discovering” is to propose conjectures. Conjectures allow correlations to be formed 

between concepts or properties. Mathematical thinking is also expanded with the 

follow-up processes of justifying, proving, and improving. Therefore, the forming of 

conjectures is the premise for solving problems and proving geometry. 

Mason, Burton and Stacey (1982) define conjecture as a plausible proposition of which 

the truth has not yet been established. In other words, this is a conclusion that has not 

yet been refuted by analyzing any relevant examples. Polya (1954) has provided many 

examples to describe that the process of conjecture is an induction that includes 

generalization, specialization, and analogy. Generalization is passing from the 

consideration of a given set of objects to that of a larger set. Specialization is passing 

from the consideration of a given set of objects to that of a smaller set. Analogy is a sort 

of similarity, on a more conceptual level.  

The teaching of geometry often targets at helping students to learn how to proof. 

Before learning deductive geometry, students learn about geometrical objects through 

the “intuitive” method. It is difficult to understand why they need to put so much effort 

into proving a known fact (Mariotti, 2000). Therefore, many instructional experiments 

on argumentation involve having debates over a topic that is waiting to be justified in a 
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mathematics classroom. Obviously, the need for proving since a proposition is 

plausible rather than completely true or false. Conjecture provides the kind of 

intellectual need that fits right into this need.  

Using a fifth grade math class activity, Reid (2002) points out that mathematical 

reasoning contains many characteristics of the so-called “scientific investigation” 

proposed by Karl Popper, in which students observe the pattern shown in an example, 

generate conjectures, test the conjectures, and they either return to the process of 

observing the case or prove the conjecture and continue to look for a more generalized 

process of deduction. The last part of which is the difference between mathematical 

deduction and scientific deduction since mathematical deduction enters the stage of 

determining how a conjecture can be proven after it has been justified. This also 

explains that conjectures serve the purpose of promoting the importance of proving. 

This study is targeted at exploring how sixth graders generate geometrical conjectures 

when geometrical conditions and graphs are given-especially how they observe the 

graphs and use measurement information. This allows us to understand how the 

students who are still in the process of intuitive geometry generate conjectures from 

visual-based geometric materials.  

METHOD 

Participant 

The participants are 24 sixth graders from five classes of two elementary schools in 

Taipei City. Based on the performance of eight pilot-study students, we have decided 

to choose students who have medium mathematic performance and enjoy expressing 

their ideas and do not overly rely on their teachers’ reactions. We thus asked their 

teachers to give us a list of the students who match these conditions and have the 

interviewer choose four to six of them from each class.  

Material 

There is a total of six questions including transversal of parallels, circumferential angle 

and central angle, triangle congruence theorems, the exterior angle theorem application 

of elements of a triangle ( see Appendix ), and triangle median theorems (such as Fig.1). 

In the question, there are given geometric conditions with three figures as examples. 

The students are asked to think about what other geometric invariance would surely 

exist under the given conditions. The graphs of the three examples were 

specially-designed. A “typical example” is a graph that exactly matches all the 

conditions given in a question, and this is the graph that is usually given in textbooks or 

by teachers (see the central graph in Fig. 1). The second one is the conjunctive example 

which is the result of the conjunction of the conditions given in the question with other 

condition(s). Take the left graph in Fig. 1 for example, it is not just a triangle but an 

isosceles triangle. The third one is an extreme example, which is a graph that matches 

the conditions but has unusually shape or small angles or line segment ratios. The 
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graph from the right in Fig. 1, for example, is a rarer triangle since it has angle ratios 

and sides which are drastically different.  

 

                         

 

conjunctive example     typical example               extreme example 

There is a triangle ∆ABC. Point D is the middle of AB  and E is the middle of 

AC . Connecting points D and E forms DE . 

Fig. 1: The Three Examples in Question 6 

Procedure 

Interviews are given individually. When dictating a question, the interviewer also 

shows the given conditions on a piece of paper which is only taken away until that 

question is completed. Three 21cm×21cm examples that are separated by 4cm are 

shown to allow us to see which of the graphs can be clearly observed by the students. 

Most of the conjectures in the questions can be done via visual observations except for 

the two questions (fig.1 and circumferential angle & central angles) that were given 

last since they involve conjectures on ratios and require more precise data. 

Measurement tools such as rulers, protractors, and triangles were also provided. The 

four questions that do not involve measurement tools are given randomly in order to 

balance the practice or fatigue effect. The locations of the three example graphs are 

also random. The conjectures proposed by the students were converted into question 

forms by the interviewer via mathematical symbols. For example, for “this angle is as 

large as the other one,” the interviewer would record what the student points out as 

“∠ADE = ∠ABC”. The interviewer would also report her every recording to acquire 

the participant’s confirmation. There are systematic recording principles for 

standardization procedural. 

RESULTS 

Description of conjectures 

Since a conjecture is plausible to the one who proposes it, thus whether the conjectures 

are correct or not, the lowest number of conjectures (total in the six questions) given by 

each participant was 14, the highest was 47, averaging 29.5 conjecturers (SD = 9.8) per 

person. In other words, 709 propositions emerged among the 24 students. However, 

after a conjecture was proposed, we evaluated whether this conjecture was natural 

based on the given conditions. We then discovered that there were 574 propositions 

that were correct conjectures, which was 81% of the total amount, averaging 23.9 per 

person. This kind of conjecture includes correct questions that are not important in 
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future geometrical proving. For example, in the question in Fig. 1, the students pointed 

out that ADE must be a triangle. The related-correct conjecture refers to the 

propositions that are often used in geometric prove. There are 261 related-correct 

conjectures, which are 37% of the total amount of conjectures, averaging 10.9 per 

person. The so-called conjecture accuracy in the following refers to the number of 

related-correct conjectures/the number of conjectures per questions. 

By analyzing related-correct conjectures, we can see that most of the conjectures 

involve an equal relationship between two variables (such as AB = CD, or ∠ADE = 

∠ABC) and linear function (such as ∠ABC + ∠ABE = 180
o
). The variables 

concentrated on the length of segments, angles, and area. Correct but not related 

conjectures include “this is a triangle” or “there are three sides and three angles”; or 

adding some segments and describing the graphs, including “drawing a line from point 

A that is perpendicular to BD gives us the height of ∆ABC”. 

Categorization of preliminary observation behavior 

The average amount of time for a participant to look at a question was 12 minutes. It 

was impossible for the interviewer to completely observe and record each participant’s 

behavior in observing the examples. However, if we assume how the participant 

observes an example in the first minute tells us the important source of conjectures, 

then that preliminary observation behavior (referred to as “POB” below) should be 

correlated to the quantity or quality of conjectures. The research has divided POB into 

three types. In the first type, a participant would observe only one graph. His visual 

focus would shift between the three graphs constantly after reading the question. Yet, 

he would quickly choose an example as the target of observation and mostly ignore the 

other two graphs. Or, although he compares two graphs, his attention is obviously 

focused on only one of them. In the second type, the participant observes two graphs. 

He would scan all the graphs and pick two of them and spend a roughly equal amount 

of time on comparing them. In the third type, the participant observes three graphs, 

meaning he spends similar amounts of time on all three examples.  

Each of the 24 participants answered 6 questions, and a total of 144 questions were 

answered, thus there are 144 POBs that can be classified. Table 1 list the number of 

conjectures for the above three types of POBs, the number of related-correct 

conjectures, and their accuracy. Since there are many POBs in which only one graph 

was observed, we had to classify which of the graphs was actually observed. 

The relationship between conjectures and POB  

We had combined and averaged the data on observing 2 and 3 graphs. The number of 

conjectures for each question is 3.58 ((3.67+3.38)/2), and comparing this to the data on 

observing only one graph, 5.23 ((6.17+5.15+4.35)/3), the result of point-biserial 

correlation is rpb = -0.225 (p<0.05), showing that more conjectures are generated by 

observing only one example. If we analyze the accuracy rate, the result also reaches the 

level of significance (rpb = -0.191, p<.05), showing that it is easier to generate more 

related-correct conjectures by observing one example instead of other kinds of 
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observations. This explains that POB is indeed correlated to the number of conjectures 

and the ratio of valid conjectures. 

 
Observe 1 Graph ( 122 

a
 ) Observe 

2 Graphs 

Observe 

3 Graphs 

 conjunctive(35) 
typical 

(53)  
extreme(34) (9) (13) 

Average No. of 

conj. 
6.17

b
 5.15 4.35 3.67 3.38 

Average No. of 

related-correct conj. 
2.23

b
 2.29 1.24 0.67 0.69 

 Accuracy (%) 36.11 44.40 28.38 18.18 20.45 

a. The numbers inside the (  ) are the number of questions for a category’s preliminary 

observation. The total number was 6×24 = 144. 

b. The number is the average number of conjectures or related-correct conjectures for a 

question. 

Table 1: Number of Conjectures and Related-correct Conjectures and the Accuracy 

under Three Observation Behaviors 

The behavior of observing only one graph can also be divided into three scenarios. 

Using conjunctive examples yields more propositions (F (1, 67) = 8.11, p <.01, 
contrast to extreme example), but the accuracy rate is slightly lower than that yielded 

by using typical examples. Participants who observed typical examples showed a 

marginally better accuracy than observing extreme example (F (1, 67) = 3.33, p = .07). 

Participants who observed extreme examples had a more difficult time in generating 

conjectures, and the ratio of good conjectures was also lower.  

The relationship between conjectures and measurement 

Through the behavioral observation of individual interviews, we discovered that 

measurement tools possibly play the following three roles in the participants’ 

conjecture generating and reporting. In the first situation, a participant has already 

made a guess. He then uses measurements to verify that guess and only reports it if he 

does not see contradictions in the result. Following this logic, the measurement may 

have appropriately eliminated an incorrect guess, or the erroneous measurement has 

eliminated the correct guess. In this study, we have observed two participants who 

gave correct conjectures before they used measurement tools. However, they were not 

sure about their conjectures so they used the tools, and they actually rejected their 

correct conjectures due to measurement errors.  

In the second situation, a student does not yet have a correct guess, and he/she then 

gathers a large amount of data through measurements and attempts to combine the data 

together. This kind of student’s behavior is constantly measuring the line segments, 
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angles, or certain pieces of information, thus spending much time and effort on the 

measurements. This kind of effort usually collects a lot of information. But plausible 

conjectures could not be yielded from this kind of strategy, because one must have 

enough working memory in order to organize and calculate the information. 

Nevertheless, there are successful cases. For example, when a participant tried to solve 

the question in Fig. 1 and was measuring the lengths and altitudes, he suddenly 

discovered that the height in the smaller triangle ADE is the same as that in the 

trapezoid DECB, thus reaching a correct conjecture by accident.  

In the third situation, a participant may not yet have a correct guess but has a certain 

type of relational schema, for example, equality schema ( x1 = x2 ). He would then 

choose a type of variable and substitute the measured data into the relational structures 

to verify whether the data match. For example, he would use a ruler to measure the 

length of the sides that appear identical and look for the two segments that match the 

relational structure. If he still could not find the matching data despite constant effort, 

the participant would then change the variables (e.g., look for identical angles rather 

than length) or change the relational structure (e.g., change it to x1 + x2 = constant). 

The above three situations often emerge within a participant or even a question. We 

also discovered that the third situation and the conjectures yielded from schema 

activating are most commonly observed. In other words, a participant may begin with a 

vague relationship (“maybe this and that are equal,” “maybe something will come up if 

I add this with that”), and he then acquired numbers that can be used for substitution 

through visual estimation or actual measurements. When this becomes successful, 

he/she then makes a plausible guess.  

Conjecturing and schema activating 

Among the 24 participants, one of them has especially demonstrated the phenomenon 

of schema activation. He proposed 19 conjectures for the 6 questions. 18 of them were 

equality relationships such as X = Y and X + Y = Z, and most of which were related to 

angles (e.g., ∠EOA = ∠OPC, ∠ACD = ∠CAB + ∠ABC, ∠EOB + ∠OPC = 180°). 

Only one of them was related to area (area ∆ABD = area ∆ACD); four of them were 

related to length (segment BD = segment BC). Although 16 of the 19 conjectures were 

accurate, showing that the activated equality schema indeed helped him to generate 

many related-correct conjectures, the pattern of this activation was very limited, 

resulting in a limited content of conjectures. For example, he was unable to discover 

that 2DE = AB or DE//AB in Fig. 1.  

CONCLUSION 

Most teachers do not want their students to make uneducated guesses, but they also 

want them to be brave enough to make guesses that are meaningful in mathematics. 

This kind of expectation is self-contradicting. How are students expected to be able to 

conjecture well if they never dare to make them at the first place? 
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In advanced mathematics, conjectures often involve deducing one element(s) from 

another element(s) and involve less induction. However, to elementary students who 

do not understand geometry greatly or are not very good at deductive reasoning, their 

experiences of conjectures can be enriched through visual-based geometric materials 

such as observing examples, analyzing properties, and conjecturing by induction. 

In this study, we discovered that when the students begin observing the examples, they 

tend to make guesses from a single example, and they make more conjectures by 

observing one example instead of two or three examples. This phenomenon is related 

to the “generalization” discussed by Polya (1954, p.12-17). By looking at just one 

example, the participant receives less information or restrictions, thus he has more 

capacity to generalize more conjectures. Moreover, comparing the accuracy of 

conjectures, we see that it is higher in those who observe only one example instead of 

two or three. We argue that if a person generalizes conjectures from an example and 

verify them through other examples, it will be better than making conjectures that 

match all the examples. This still has to do with our cognitive loading; when a person 

exceeds this loading, he/she either is unable to make conjectures or makes faulty 

conjectures.  

When observing only one example, a student who observes the conjunctive example 

generates more conjectures than he would do with other two types of examples, and 

this result matches with the nature of conjunctive examples-they are examples 

generated by the given conditions and other conditions. Thus, additional conditions 

may also lead to some conjectures, but this is not a necessary feature of the given 

conditions. Therefore, the number of accurate conjectures is roughly the same as 

typical examples, and the accuracy after division becomes slightly lower. Just by 

observing the typical examples, we see that since they are the graphs that exactly match 

with the given conditions, the quantity of the students’ conjectures is not as high, but 

the accuracy is higher. The students who observed extreme examples did poorly on all 

three indicators, and this is probably because these examples’ visual bizarreness 

prevented them from making guesses. For example, when two segments that are of the 

same length could not be observed easily due to their location, the students completely 

ignored the possibility that these two segments were of the same length, thus no 

follow-up confirmations were made.  

Our study also shows that this kind of visual-based conjecturing is closely related to 

the activation of relational-schema. For example, when the length of two segments in a 

graph look identical, equality schema would be activated, and the students would more 

carefully observe or verify this kind of relationship with tools. They would even use 

other examples to verify this, and if the two lines were indeed equally long, the 

students would then have successfully made a plausible conjecture. Afterwards, the 

students would continue to check whether other lines or angles were identical with 

each other.  

Having this kind of activity of making conjectures encourages students to generalize a 

vague guessing from an example. If they make more observations, propose conjectures, 
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and verify them, they would be more likely to spontaneously access this relational 

schema when they see other questions in the future. Moreover, teachers can ask 

students “are there other relationships other than being identical” to guide them to 

systematically look for other schema. Afterwards, students would again make simple 

verifications via visual observations to acquire more plausible conjectures. Students 

need more experience in order to develop better conjectures, and visual-based 

geometric materials are possibly a good starting point.  
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Appendix: Question 1 to 5 and their typical examples 

Triangle Congruence Theorems 

There is a triangle ∆ABC where ACAB =  and BCAD ⊥ . 
 

The Exterior Angle Theorem 

There is a triangle ∆ABC with extended BC . 
 

Transversal of Parallels 

CDAB // . EF  intercepts AB  in point O and CD  in point P. 
 

Application of Elements of a Triangle 

There is a triangle ∆ABC with internal point D forming ∆DBC. 
 

Circumferential Angle and Central Angle 

O is the center of a circle. On the circle, there are three points, 

A, B, and C, to form OA , OB , AC , and BC .  
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ABSTRACT 

The research investigated whether direct intervention within specific numerical 

contexts will lead students to a better understanding of algebra. All seventh graders 

in two consecutive years in 4 schools in Israel participated in the study. The findings 

point to a greater transfer from the numerical context to the algebraic one after the 

intervention. Results support the assumption that “teaching arithmetic for algebraic 

purposes” can prevent beginning algebra students from making certain structural 

mistakes. However, when it came to the advanced algebra the achievements remained 

low although in terms of change a noticeable change was also found. 
  

THE PROBLEM 

The common perception of the algebraic structural rules as rules that draw their 

legitimization and meaning from rules valid in the world of numbers (Buxton, 1984; 

Davis, 1985; Smith, 1997), has generated the search for a model to describe the 

relation between students’ understanding of the number system and of the algebraic 

one (Collis, 1971; Lee and Wheeler, 1989; Linchevski and Herscovics, 1996b). In the 

context of the school curriculum, it has motivated a teaching approach that may be 

described as “teaching arithmetic for algebraic purposes” (Davis, 1985; Arcavi, 1994; 

English and Sharry, 1996; Milton, 1999). The underlying assumption is that 

understanding of the structural rules in arithmetic is a key for understanding the 

corresponding parts in algebra (Kuchemann, 1981; Booth, 1984; Kieran, 1989; Lee 

and Wheeler, 1989; MacGregor, 1996; Tirosh, Even and Robinson, 1998; Milton, 

1999; Philipp and Schappelle, 1999; Carraher, Schliemann and Brizuela, 2001; 

Chappell and Strutchens, 2001).   

The literature on problems students experience in early algebra (e.g., Collis, 1975; 

Kieran, 1985, 1989; Steinberg, Sleeman and Ktorza, 1990; Sfard and Linchevski, 

1994; Sfard, 1995) provides a detailed description of difficulties beginning algebra 

students have with the algebraic structure. What is lacking, however, is a sufficient 

theoretical definition as for what will be considered as “difficulties with algebraic 

structures” that stem from “difficulties with numerical structures”, and empirical 

evidence, to establish the assumed isomorphism between students’ difficulties in 

algebra and in arithmetic. Along these lines, Linchevski and Livneh (1999) designed 

numerical tasks that were structurally analogous to tasks that had been found to be 

problematic in the algebraic context and presented them to beginning algebra students. 

Their study confirms the assumption that obstacles detected in algebraic contexts 

exist also in corresponding numerical contexts, and that these obstacles are 

widespread. 
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However, this in itself does not necessarily lead to the conclusion that “teaching 

arithmetic for algebraic purposes” (Davis, 1985; Arcavi, 1994; English and Sharry, 

1996; Milton, 1999) guarantees transfer of the cognitive schemata constructed within 

the world of numbers to the world of algebra. As Linchevski and Livneh (2002) state: 

the question of whether systematic work on “structure sense” within the world of 

numbers will lead students to a better understanding of algebra in general, or at least 

to a better understanding of the algebraic corresponding parts, remains open. The 

purpose of the study presented here was to address this question. We investigated 

whether direct intervention within specific numerical contexts will lead students to 

better success in the corresponding algebraic contexts. 

Research question: The major research question was whether direct intervention 

within specific numerical contexts leads students, which have been identified as 

having difficulties in these numerical contexts, to succeed better in the corresponding 

algebraic contexts. 

In order to answer this question we first developed a screening tool that would 

identify, at the beginning of the 7
th
 grade, students who have difficulties in specific 

numerical contexts and confirmed that: 1. The identified students would indeed 

experience difficulties in the corresponding algebraic contexts (Henceforth referred to 

as SAR – Students At Risk); 2. The other students, those who would not be identified 

by the screening tool (Henceforth referred to as SNR – Students Not at Risk) would 

succeed better in the corresponding algebraic contexts. The screening tool was 

designed and validated during Stage A of the research. Stage B of the research was 

designed to answer the major research question. In this paper we report only on Stage B. 

 

STUDY DESIGN 

Since a study of this kind requires a close cooperation with the schools for a few 

years, a large staff, resources, and budget, the research had to be limited to 4 junior 

highs. We chose, for stage B, the base-line study design in which each of the 4 junior 

high schools was compared with itself, This choice was based on the assumption that 

the nature of the population in each school – students and teachers - and the way of 

teaching mathematics do not radically change in two consecutive years, The research 

population included all 7
th
 graders in 4 junior high schools in 2 consecutive years. 

The 4 schools were chosen randomly from 20 schools that agreed to participate in the 

study (2 out of 12 schools located in large cities and 2 out of 8 schools in smaller 

towns). Schools 1 and 2 are from large cities and school 3 and 4 from smaller towns. 

The first year of stage B – The Base line year: In the first year of stage B, the 

identification of the SAR students was carried out by the researchers and three 

research assistants that were trained for this task. At the end of the school year a 

posttest was administrated to all 7
th
 graders. During this year no intervention was 

implemented by the researchers. However, in order to put off a possible alternate 

conjecture, that what is really responsible for a probable change is the time devoted to 

the students working with a teacher in small groups, and not our planned intervention, 

each of the SAR students received extra teaching time from their classroom teachers 
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in small groups, as if they were going through the intervention process. Each SAR 

received teaching time in accordance with what he or she would have received if it 

were the intervention year, but the content of this extra help was determined solely by 

the teacher. At the end of this year, a posttest was administered to all 7
th
 graders - 

SAR and SNR. 

Second year – The Intervention year: In the second year, after in-depth training, the 

identification process was carried out by the school teachers, with the support of the 

research team. Also this year the intervention was carried out by the school teachers 

but, this year the intervention activities were the ones designed by the researchers 

(especially aimed at "teaching arithmetic for algebraic purposes"). The intervention 

sessions took place once or twice a week, in groups of 1 to 4 students. Each group 

was given well-defined activities for a pre-defined period of time. The average 

number of sessions per student or group was 14. At the end of the school year the 

posttest was administrated to all 7
th
 graders - SAR and SNR. 

Research tools 

• Teaching modules: The Teaching modules were prepared on the basis of previous 

reported research and the analysis of students’ work in Stage A of the study. These 

modules were in pure numerical contexts and were designed to address those 

arithmetical structural difficulties we planned to tackle during our teaching 

intervention (e.g., order of operations; “detachment from the minus sign,” "grouping 

like (numerical) terms"; (Linchevski & Herscovics, 1996a); the equality sign, (Behr, 

Erlwanger & Nicholes, 1976). We considered the designed tasks as “algebra 

compatible” - tasks in the sense that they reflect algebraic competence albeit in a 

numerical context. For example, the item “Is 75 - 25 + 25 equal or not equal to 75 - 50?” 

was considered compatible to a possible future algebraic task: “Is 16 - 4x + 3x equal 

or not equal to 16 - 7x?”. The activities were designed to elicit cognitive conflicts in a 

context that allowed a meaningful process of hypothesis testing, thus having the 

potential of leading to cognitive gains (Doise, 1978). 

• The screening tool – the Pretest: A written pretest devoted solely to numerical 

contexts was administered to all seventh graders at the beginning of the school year. 

The pretest contained 18 items, 10 out of the 18 were taken into consideration in the 

process of identifying SAR.  Of these 10 items, 3 dealt with order of operations and 7 

were considered “algebra compatible". The remaining items were generalization tasks 

and translation from the spoken language to the mathematical language tasks (e.g. 

write a number that is bigger by 2 from 7) and computation with whole numbers. 

Students that were identified as having problems with computation were provided 

with a calculator (a simple calculator that does not follow the order of operations). A 

student was defined as SAR if he or she gave an incorrect answer for at least 2 out of 

the 3 first items (order of operations) or at least 4 out of the 7 "algebra compatible" 

items. 



Livneh & Linchevski 

PME31―2007 3-220 

• Individual interviews: All students in the at-risk group (SAR) were interviewed 

individually with the aim of constructing an intervention plan based on the items 

answered incorrectly on the pretest. 

• Intervention plan: Each SAR student had his or her own personal intervention plan. 

This plan included teaching modules directed solely at those topics the individual 

student had difficulty with in the pretest, thereby keeping the teaching intervention to 

the minimum. The teaching intervention was carried out in small groups of students 

having a similar profile. 

• Posttest: The posttest included three types of items: numerical tasks; algebraic tasks 

compatible with the numerical tasks (henceforth COM-Algebra - compatible 

algebra); and algebraic tasks that were not compatible with the numerical tasks, such 

as generalization tasks in which the student is expected to construct a suitable 

algebraic sentence, and algebraic word problems and the like (henceforth 

ADVANCED-Algebra). Four scores were calculated for each student: a total score 

and one score for each sub-test. 

As the aim of the research was to investigate whether intervention in a numerical 

context prevents difficulties in the algebraic one, we looked for a transfer of 

knowledge acquired within a numerical context to compatible and Advanced 

algebraic contexts. Thus, the intervention was in a pure numerical context, while the 

posttest included numerical tasks as well as COM-Algebra and ADVANCED-

Algebra tasks.  

 

RESULTS 

By the end of the base line year, and by the end of the intervention year, we gave a 

posttest to all 7
th
 graders in all 4 schools. The posttest was identical in the two years. 

However, in the base line year the posttest was administrated and marked by the 

research team. The schoolteachers were not part of the process and had no access to 

the test or to the results. In the intervention year the teachers administrated the tests 

and marked them with the guidance of the research team. The results are analyzed 

according to two lines: in each year (base and intervention) 1. The SAR and the SNR 

students' results are compared; 2. The SAR students' results in the two years are 

compared, and the same is done for the SNR students.  

The results of the base line year and of the intervention year, for each of the 4 schools, 

are displayed in Table 1.  
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Table 1 

Posttest marks of SAR and SNR students at the end of the Baseline year and the end of the 

Intervention year, and the Difference between populations in Sd. U  

  total   numerical Basic 

  algebra 

Advanced  

algebra 

School 1     

SAR 60.06 72.85 52.43 53.61 

SNR 73.40 85.74 69.76 64.02 

Dif. in Sd. U 1 0.99 0.81 0.78 

baseline 

 year 

t (significance) 6.086 (0.00) 3.729 (0.00) 7.421 (0.00) 6.277 (0.00) 

SAR 67.9 79.33 68.79 57.38 

SNR 78.34 88.6 77.7 69.47 

Dif. in Sd. U 0.86 0.73 0.55 0.83 

intervent

ion  

 year 
t (significance) 5.263 (0.00) 4.330 (0.00) 3.188 (0.001) 5.061 (0.00) 

School 2     

SAR 49.69 70.35 31.38 37.68 

SNR 63.05 79.88 54.68 41.32 

Dif. in Sd. U 1.17 0.80 1.49 0.38 

baseline 

 year 

t (significance) 5.937 (0.00) 4.959 (0.00) 5.283 (0.00) 3.751 (0.00) 

SAR 64.38 75.93 63.10 55.40 

SNR 74.60 86.82 72.87 64.04 

Dif. in Sd. U 0.52 0.50 0.34 0.60 

intervent

ion  

 year 
t (significance) 4.901 (0.00) 4.693 (0.00) 3.152 (0.001) 5.361 (0.00) 

School 3     

SAR 54.92 72.92 41.67 41.41 

SNR 67.32 80.36 57.52 48.66 

Dif. in Sd. U 0.98 0.60 0.99 0.61 
baseline 

 year 
t (significance) 3.502 (0.001) 2.388 

(0.011) 

1.835 (0.036) 3.626 (0.01) 

SAR 72.74 84.40 76.03 60.24 

SNR 80.84 88.69 82.04 71.81 

Dif. in Sd. U 0.69 0.32 0.42 0.80 

intervent

ion  

 year t (significance) 3.146 (0.001) 1.386 

(0.085)* 

1.837 (0.035) 3.719 (0.00) 

School 4     

SAR 56.21 69.22 52.55 51.44 

SNR 72.55 86.04 74.14 65.02 

Dif. in Sd. U 0.94 0.88 0.79 0.98 

baseline 

 year 

t (significance) 10.768 (0.00) 7.547 (0.00) 13.167 (0.00) 5.358 (0.00) 

SAR 66.75 82.35 62.62 62.63 

SNR 74.38 88.81 70.81 66.05 

Dif. in Sd. U 0.53 0.49 0.36 0.29 

intervent

ion  

 year 
t (significance) 5.095 (0.00) 4.122 (0.00) 4.278 (0.00) 5.1031 (0.00) 

* not statistically significant 
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We first used the base line year results to re-confirm the validity of the pretest. As 

can be seen from Table 1, the performance of SAR students at the end of the base-

line year was quite poor, by the end of the 7
th
 grade the SAR students were the weak 

students in the algebra class. Their total mark was at the passing mark or below and 

their marks in Basic algebra (COM-Algebra) were in the range of 31% to 53%. 

Moreover, our conjecture that without any direct intervention the SNR students 

would experience fewer difficulties at the beginning of algebra was also confirmed. 

From Table 1 we can see that their total mark was in the range of 63% to 74%, and 

their achievement in Basic algebra was in the range of 55% to 74%. From Table 1 we 

can also see that by the end of the year the differences between the SAR and their 

SNR classmates were statistically significant. 

What we can also learn from Table 1 is that the achievement of the entire population 

on the more Advanced-algebra items was low; both populations did poorly on the 

advanced items.  

Thus our hypothesis was confirmed. The SAR students were not able to meet on their 

own the requirements of the Basic algebra course. 

These results, of course, do not necessarily imply that our planned intervention will 

improve the SAR students' performance in Basic algebra. We would like to 

emphasize again that since we wanted to check a transfer of knowledge from 

numerical to algebraic contexts, the intervention was in a pure numerical context, 

while the posttest included numerical tasks as well as Basic algebra (COM-Algebra) 

and Advanced algebra tasks. 

Table 1 also displays the posttest marks of both populations at the end of the baseline 

year and at the end of the intervention year for each of the schools. 

Our assumption was that the structural knowledge acquired in our focused and 

controlled intervention, in a purely numerical context, would be transferred to the 

Basic algebraic context that is part of the regular 7
th
 grade mathematics syllabus. The 

criteria for confirming our conjecture were: 1. the differences in achievements on the 

posttest between the SAR and the SNR students in the Intervention year, in 

comparison to the differences in achievements between the two populations in the 

baseline year; 2. the differences in achievements between the SAR students in the 

baseline year and in the Intervention year. 

As can be seen in Table 1, the differences between the two populations, in Standard 

deviation units (Sd. U) were smaller in the Intervention year than in the baseline year 

in each of the 4 schools. These decreases were statistically significant. Baring in mind 

that the Basic algebra part was our major target we can conclude that according to our 

first criterion our conjecture was confirmed. The SAR students indeed, implemented 

the structural knowledge they were exposed to in the numerical context in the 

algebraic one, albeit the difference in performance between them and the SNR 

students remained in the range of 0.5 Sd. U. This difference is still statistically 

significant.  

As for the raw marks, from Table 1 it can be seen that the achievements of the entire 

population, not only the SAR students, were improved in the Intervention year. This 



Livneh & Linchevski 

PME31―2007 3-223 

change might be due to the fact that the Intervention units were presented to the SAR 

students by their mathematics class-room teachers who participated in our special 

workshops. These teachers were also the regular teachers of the entire class, thus it is 

reasonable to assume that some of the ideas that these teachers implemented in the 

SAR Intervention-groups were also implemented in the regular mathematics classes.  

The second criterion for confirming our conjecture was the gap in achievements 

between the SAR students in the Baseline year and in the Intervention year. 

Table 1 displays the results of the posttest of the SAR students at the end of the 

Baseline year and at the end of the Intervention year separately for each of the 

schools. The results show that in schools 1, 3, and 4 the change in the gap was 

statistically significant while in school 2 although an improved was detected the 

change was not statistically significant. From the Table we can also see that it is not 

only that the marks improved but also that the raw marks of the SAR students by the 

end of the Intervention year were in the norm and even above. The total average 

marks were in the range of 64% to 73%, and in Basic algebra they were in the range 

of 63% to 76%. The achievements in Advanced algebra, however, remained low 

although in terms of change (in Sd. U) a noticeable change was also found. 

DISCUSSION 

This study empirically tested the assumption that “teaching arithmetic for algebraic 

purposes” would prevent beginning algebra students from some structural mistakes in 

compatible algebraic contexts and help them in more advanced algebraic contexts. 

For this purpose, identification of the target population and the teaching intervention 

were carried out exclusively in numerical contexts, while evaluation of the process 

was done in numerical and algebraic contexts.  

Results support the theoretical assumption to some extent. In the year that the 

intervention was specifically aimed at “teaching arithmetic for algebraic purposes,” 

the progress of at-risk students in compatible-algebra tasks (those tasks that the 

teaching intervention aimed at improving) was statistically significant. However, 

progress in the other algebraic tasks was much smaller. It is interesting to note that 

the SNR scores in the second year were also higher than those in the first year. A 

possible explanation for this finding is that the teachers went through a change that 

influenced their regular classroom teaching to a certain extent. 
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THE POTENTIAL OF PATTERNING ACTIVITIES TO 
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Ling Tung University, Taiwan  

 

This study presents partial results from the project of Ma (2002). It was conducted to 

obtain the deeper appreciation and knowledge of children approaches to quadratic 

sequence though patterning activities. The participants were 40 elementary school 

students in Taiwan. The conclusions drawn from this study were: (a) it was not to 

guarantee that students could benefit from geometry or number approach because 

three main obstacles and two students’ individual reasons existed. Students with the 

main obstacles only did a pattern generalization, not a sequence generalization. (b) 

Students will have potential for developing generalization, if they apply the geometry 

approach. 

INTRODUCTION 

Mathematics can be thought of as a search for patterns and relationships (Biggs & 

Shaw, 1985); Mathematics is described as “a science of pattern and order (Van De 

Walle, 1998). Thus, a more apt definition of mathematics becomes fully apparent; that 

is, mathematics is the science of patterns. The mathematicians seek patterns in number, 

in space, in computers, in science, and even in imagination.  

Patterns involve a progression from step to step, and in technical term these are called 

“sequence”. Patterning activities develop directly a sense of pattern and regularity, and 

practice the skills of searching for pattern, extending patterns, and making pattern 

generalization. These processes will involve in variable and the concept of function. 

As a result, Usiskin (1995) states the view that algebra is the language through which 

we describe patterns. Patterning activities play a significant role for primary graders to 

establish the algebra foundation (Herbert & Brown, 1997;, 2002). 

Algebra is a source of considerable confusion and negative attitudes among students 

(Cockcroft, 1982). Some students experience difficulty making the transition from 

arithmetic-based programs to the ideas of algebra (Greenes & Findell, 1999). 

“Expressing generality” is described as one of four different roots of algebra (Mason, 

Graham, Pimm, & Gowar, 1995). Thus, the use of patterns, leading to an improvement 

in this unhappy situation, has become an ordinary route into expressing generality 

within school mathematics curricula (A. Orten & J. Orten, 1999).  

Hargreaves, et al. (1999) denotes that the need to generalize about the given terms 

might have two meanings. One is “a pattern generalization,” it is to see more in the set 

of numbers than is given. The other is “a sequence generalization,” it is to go beyond 

the set of numbers. Ma and Wu (2006) show that in the process of expressing 

generality, most fifth and sixth grades were unaware of linking patterns to algebraic 
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concepts; what they did only was “a pattern generalization”. Few could obtain the 

concept of a function that describes the relationship between any object and its position 

in a sequence; what they did was “a sequence generalization”. 

The school practice involving generalization in algebra often starts from figures or 

numeric sequences. Children need to realize that there are two representations of the 

same situation, and need to enable to switch from one to the other (Ursini, 1991). J. 

Orten, A. Orten, and Roper (1999) suggest that there are three purposes of setting 

patter tasks within pictorial context. One is for those who could possibly find support 

or their thinking from a more geometrical approach. Thus, it might be assumed that 

pictorial context adds meaning to the task. Second is pictorial context might be more 

elementary than purely symbolic context. Third is just to vary the format to create more 

of a problem to be solved. The students might use different method to convert 

pictorials to numbers sequence. Based on Orten et al. (1999), there are three methods 

of translating pictorial to number. One method is to count the dots for each shape 

presented in the task, then immediately converting the shapes into a number sequence. 

A second method is to look at how many more dots each new shape requires. A third 

method is based on seeing the shapes.  

Quadratic sequences are those where the difference of the differences (i.e., the second 

difference) is constant, nevertheless, the majority of the sequences used in the 

textbooks are linear, where the difference between successive terms is constant. For a 

deeper appreciation and knowledge of children approaches to sequences they less met, 

this study was conducted focusing on pupils’ generalization about and process 

approach to quadratic sequences. Especially the patterns in the sequence were set with 

pictorial and numerical contexts, which were two representations of the same situation. 

What processes would be involved when students work with quadratic sequences? 

What would be students’ obstacles along the road to successful generalization while 

they observe and summarize patterns? Which method would they adopt while they 

convert pictures to numbers sequences? Which approach (geometry or number) could 

students benefit from? However, pupils were not expected to produce a formula for the 

general, or nth, term, while they did not yet receive formal algebra curricula. The 

purposes were as follows: 

(1) To analyse the processes and how these might relate to generalizations  

(2) To investigate the obstacles along the road to successful generalization; 

(3) To explore the approaches students could benefit from while they work at 

patterning activities. 

METHOD  

An internet discussion board would be given an educational meaning while shifting the 

mathematical activities to it (Ma, 2001, 2004, 2005). The participants in this study 

operated on the pattern activities via an internet discussion board. Except for the 

traditional functions of word typing and recording, it also includes the functions of 
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picture and chart pasting. Figure 1, for example, shows a screenshot on the internet 

discussion board. Each of eight problems, pattern question, was posed on the internet 

every two to three weeks. Among them problem 1, 3, 5, and 7 were with pictorial 

contexts, while problem 2, 4, 6, and 8 were with numerical contexts. Problem 1 and 6 

are two representations of the same situation. They are quadratic sequences.  

 

Figure 1: A screenshot on the internet discussion board 

The participants in this study were 28 sixth graders and 12 fifth graders from Taiwan. 

They had basic computer skills and used the internet regularly. Each participant was 

anonymous but had fixed code. Three codes or four codes (adding “m” in front of three 

codes) represented the sixth and fifth graders respectively. Among three codes, the first 

symbolized the sex (b: boy, g: girl), the second symbolized the mathematics 

achievement (h: high, m: middle, l: low), and the last was only serial number. For 

example, bh1 represented the first (1) high-achieved (h) boy (b) from grade six, mgl2 

represented the second (2) low-achieved (l) girl (g) from grade five (m). 

For solving the problems the students were asked to search for pattern, extend patterns, 

and make pattern generalization. They were allowed to work on the problems at 

anytime and from anyplace. After having completed the activity on the internet, some 

students were interviewed to understand their thinking by teachers. Data relating to 

students’ understanding of pattern in the sequence were collected in both forms. One is 

written form with students’ responses to describing the rule for the patter on an internet 

discussion board, and another is oral form by interviewing students on a one-to-one 

basis. This activity lasted from September, 2001 to March, 2002.  

DISCUSSION 

The written responses of problem 1 and 6, two representations of the same situation, 

were examined to gain insights into the kinds of approach used, the processes applied 

and how these might relate to generalizations. Problem 1 with pictorial contexts was in 

figure 1 above, and problem 6 with numerical format was as 2, 6, 12, and 20. The 

pupils were asked to predict the number for the next, fifth, tenth, and hundredth in the 
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sequence. Five students were chosen as examples in this study. For convenience, the 

researcher would use “P” and “N” to represent the pictorial and numerical context 

respectively, and use number (1, 2, and 3,) to arrange in students’ responses order. For 

example, “P-1  bl1” would represent the first response of bl1 to pictorial context.  

Protocol 1 

P-1  bl1: I add 2 on 4. 6 times 5 are 30. There will be 30 dots in the fifth. 

N-1  bl1: 1×2=2, 2×3=6, 3×4=12, 4×5=20, 5×6=30,…, 10×11=110. 

Student bl1 preferred to geometry approach, where he showed the analytic thinking. 

For example, he viewed “12”as “3×4” (N-1). Thus, he could see that both sequences 

were equivalent. By interviewing, bl1 expressed that the row and the column 

respectively required more one dot from shape 1 to shape 2, and it required more two 

dots from shape 3 to shape 5. Thus, His method was based on seeing the shapes before 

converting pictorial to number (P-1). However, he only could find more terms in a 

sequence such as the fifth and the tenth. He did not try to do far generalizing tasks (e.g., 

the hundredth), Stacey (1989) describes. The individual interviews conformed that his 

arithmetical incompetence could be his obstacles.  

Protocol 2 

P-1  gm4: 2, 6, 12.   3 multiplied by 2 are 6. 6 multiplied by 2 are 12.  They go up in 3, 6, 
9, and 12.   2×9=18.   2×12=24. There will be 24 dots in the fifth. 

P-2  gm4: There will be 480 dots in the hundredth. There are 24 dots in the fifth, 100 
divided by 5 equals 20, and then 24 times 20 equal 480. 

N-1  gm4: Number 2 is 2 plus 4, number3 is 6 plus 6, number 4 is 12 plus 8,…, and 
number 10 is 90 plus20. It will be 110 in the tenth.  

N-2  gm4: Number 10 is 110, and 100/10=10. It will be 1100 (110×10) in the hundredth.. 

The student gm4 preferred to numerical approach, where she immediately translated 

the shapes into a number sequence by counting the dots (P-1). She adopted 

idiosyncratic methods unpredictably to extent the pattern, such as 2×9=18, 2×12=24 

(P-1). Unfortunately, the method was not useful to make generalization. She fixedly 

swapped to a short-cut method for far generalization after finding more terms in a 

sequence. For example, A100= A5×20= 24×20=480 (P-2) and A100=A10×10= 

110×10=1100 (N-2). This suggested that gm4 did not perceive that both sequences 

were two representations of the same situation. Thus gm4 had obstacles along the road 

to successful far generalization.  

Protocol 3 

P-1  gh1: 2 dots plus 4 dots equals to 6 dots, and 6 dots plus 6 dots equals to 12 dots. 
They go up in 4, 6, 8, and 10.   12 dots plus 8 dots equals to 20 dots.   20 dots 
plus 10 dots equals to 30 dots. There will be 30 dots in the fifth. 

P-2  gh1: There are 900 dots in the 99
th
. I add 200 dots to the 99

th
 shape. There will be 

1100 dots in the 100
th
 shape. 

N-1  gh1: …..They go up in 2s, i.e., 4, 6, 8,..,18, 20.  30+12=42, 42+14=56,…., 
90+20=110.    Number 10 is 110. 



Ma 

PME31―2007 3-229 

N-2  gh1: 2, 6, 12, 20, 30, 6/2=3, 12/2=6, 20/2=10, 30/2=15. (3, 6, 10, 15) 
I worked it out like I counted in 3 to 6 is 3, 6 to 10 is 4, 10 to 15 is 5. 
(3, 4, 5)   3 to 4 is 1, and 4 to 5 is also 1. 

Student gh1 was affected by different context. Her method of converting pictorial to 

number was to look at how many more dots each new shape requires (P-1). She could 

see how the addend was related to the position of the term, for example, adding 200 

dots to the 99th shape (P-2). At last, she could not get the number of the 99th shape 

(900 dots was assumed) because she depended on a recursive approach. In addition, 

she described quadratic sequence by different way, that is, the constant difference (i.e., 

1) of differences (i.e., 3, 4, 5) was between first quotients (i.e., 3, 6, 10, 15) (N-2). 

Unfortunately the quotients came from unpredictably personal methods of gh1, and it 

was not useful to make generalization. She had the fixation with a recursive approach 

in extending a pictorial or number sequence (P-1, N-1). She was used to looking for a 

local rule rather than a global rule. Thus gh1 had obstacles along the road to successful 

far generalization.  

Protocol 4 

P-1  mgl2: 2, 3+3, 4+4+4, 5+5+5+5, 6+6+6+6+6. Thus, there will be 30 dots in shape 5. 

P-2  mgl2: It would be 101 dots. It requires more one dot from shape 99 to shape 100. 

N-1  mgl2: Number 1 is 2, number 2 is 6, number 3 is 12, number 4 is 20, and number 5 is 
30. 2+4+6+8+10+12+…+30+…. Keep adding them up and you will get the 
hundredth. 

Student mgl2 preferred to geometry approach, where she showed the analytic thinking. 

For example, she viewed “12”as “4+4+4” (P-1) or “2+4+6” (N-1). Her method was 

based on seeing the shapes before converting pictorial to number. She focused on 

component parts of shapes. For example, the third contains three rows, and each row 

covers four dots, thus there is “4+4+4”(P-1). She made a correct verbal statement (101 

dots), although she did not continue to work out the number of the hundredth shape 

(P-2). The individual interviews conformed that she could not handle the big number 

(i.e., 101+101+…+101). In addition, she made a creditable attempt at the approach to 

algebra, where she expressed the number in the form of “2+4+6++…+30+…”(N-1). In 

both contexts mgl2 noticed the method, not the answer. She had potential for 

developing far generalization although she only did near generalizing tasks.  

Protocol 5 

P-1  bh2: 3 dots in the left would be width and 4 dots in the bottom would be length, if 
we viewed shape 3 as the rectangular arrays of dots. 3 plus 2 equals 5, 4 plus 2 
equals 6, and 5 times 6 equals 30. 

P-2  bh2:  

 

 

P-3  bh2: Frame 1: 1×(1+1). Frame 2: 2 × (2+1). Frame 3: 3 × (3+1).  Frame 4: 4 × (4+1). 
Frame 5: 5 × (5+1), 5×6=30 (dots), Frame 100: 100 × (100+1)= 10100 (dots)  
Frame n: n×(n+1). 
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N-1  bh2: Number 1 is 2. I add 4 on number1. 2+4=6. I add 6 on number2. 6+6=12. Keep 
adding even number and you will get the hundredth. 

N-2  bh2: It will be easily to count, if we convert number to picture. The way is: 

 

Student bh2 was affected by different context, but he could only benefit from geometry 

approach. His method was based on seeing the shapes before converting pictorial to 

number (P-1, P-2). He made far generalization because he could see how the numbers 

of width and length of rectangular were related to the position of the term in the 

sequence (P-3). It might prove the assumption of pictorial context adding meaning to 

the task, possibly enlivens it or simplifies it. In fact, Ma (2002) indicated that there 

were 84.4% students prefer to pattern with pictorial contexts, while there were only 

15.6% like numerical contexts. The reasons of the former were easier, more creative 

and interesting, or giving extra hints.  

Student bh2 used two methods to extend the number sequence. One is numerical way 

(N-1); another is to switch to figure (N-2). He illustrated the notion of equivalence with 

visual materials, in which each shape fell into two lines and new shapes required more 

2×2, 2×3, 2×4, and 2×5 dots. He made a creditable attempt at the approach to figure, 

but what he did was just like the numerical way. He only recognized the recursive 

nature of the pattern, and thus only produced a local rule (N-2).  

CONCLUSION 

The results from this research were the following.  

1. Few students perceived that both sequences are two representations of the same 

situation. Some students’ preference was for geometry approaches (e.g., bl1, mgl2), 

and yet others students’ preference was for number approaches (e.g., gm4).  

It was not to guarantee from which approach students could benefit. There were three 

main obstacles along the road to successful “far generalization”.1. Students merely 

produced a local rule (i.e., a recursive formula), not a global rule (e.g., bh2). 2. 

Students always thought about the numerical answer, not the method itself. The 

answer-driven approach leads student away from thinking about the methods of 

arithmetic and what they might mean. 3. Students applied a short-cut method, an 

inappropriate but simple method (e.g., gm4). As a result, these students with obstacles 
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above could not complete far generalizing tasks. That is, they only did a pattern 

generalization, not a sequence generalization.  

In addition, students’ individual reasons, such as arithmetical incompetence (e.g., bl1, 

mgl2) and unpredictably idiosyncratic method (e.g., gm4, gh1), could influence the 

development for near or far generalization. The student gm4 and gh1 described the 

sequences by different way, that is, they divided each term by “the first term” and got 

the quotients (e.g., 6/2=3, 12/2=6). 

2. Students will have potential for developing generalization, if they apply the 

approach based on the pictures, not on the equivalent number sequence. For example, 

bh2 could do far generalization (i.e., Frame 100: 100× (100+1) = 10100) with sequence 

presented in picture format. Even bl1 and mgl2, low achievers, might have 

opportunities to do far generalizing tasks. Their thinking was related to “analytic 

thinking”. For example, “12” could be represented as “3×4” by bl1 and as “4+4+4”or 

“2+4+6” by mgl2. These methods with geometry approaches students applied were 

based on seeing the shapes of sequence. Bednarz, Kieran and Lee (1996) denote that 

certain geometry approaches appear to be a possible precursor to the emergence of 

analytic thinking in learning of algebra.  

3. The students who had geometry approaches but were not yet aware of seeing 

relationship of patterns might easily progress from a recursive approach to an explicit 

approach after suggesting. For example, mgl2 might easily progress from seeing 

patterns as 2, 3+3, 4+4+4, 5+5+5+5,…or 2, 2+4, 2+4+6, 2+4+6+8,… to viewing them 

as 2×1, 3×2, 4×3, 5×4,  or 2×1, 2+2×2, 2+2×2+2×3, 2+2×2+2×3+2×4,…. Therefore, 

mgl2 will be able to find an algebraically useful pattern such as frame 10: 11×10, or 

2+2×2+2×3+…+2×10. Student bh2 switch number to figure sequence, and could see 

patterns within patterns such as 2×1, 2×3, 2×6, 2×10, 2×15 (N-2  bh2). He might easily 

progress from seeing patterns as 2, (shape 1) + 4, (shape 2) + 6, (shape 3) + 6,…to 

viewing it as 2, 2+2×2, (2+2×2)+2×3, (2+2×2+2×3)+2×4,…. Thus, bh2 will enable to 

obtain an algebraically useful pattern such as frame 10: (2+2×2+2×3+…+2×9) +2×10.  

Thus, students need progress from a recursive approach to an explicit approach. In the 

process, students will focus attention on the method, not the answer. This suggests that 

there is potential development for “far generalization”. Thus, in patterning activities 

teachers should encourage students to work at expressing their own generalization 

through geometry approaches, and then their algebraic thinking will take place.  
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INFINITE MAGNITUDE VS INFINITE REPRESENTATION:  

THE STORY OF Π 

Ami Mamolo 

Simon Fraser University 

 

This report explores students’ naïve conceptions of infinity as they compared the 

number of points on line segments of different lengths. Their innovative (albeit 

incorrect) resolutions to tensions that arose between intuitions and properties of 

infinity are addressed. Attempting to make sense of such properties, students reduced 

the level of abstraction of tasks by analysing a single number rather than infinitely 

many. In particular, confusion between the infinite magnitude of points and the infinite 

amount of digits in the decimal representation of numbers was observed. Furthermore, 

misconceptions in students’ understanding of real numbers and their representation 

on a number line were exposed. 

The research presented in this paper is part of a broader study that investigates changes 

in students’ conceptions of infinity as personal reflection, instruction, and intuitions 

are combined. It strives to uncover naïve interpretations of a concept that has puzzled 

and intrigued minds throughout history. By presenting a geometric representation of 

infinity, this study offers an occasion to observe how students respond to the 

contradictory or inconsistent results that they unearth. As students attempted to merge 

intuition with formal mathematics, some features of cardinal infinity that were at odds 

with their personal experiences and logical schemata exposed interesting ways to cope 

with the abstract concepts. Their attempts to make the material more comprehensible 

also revealed serious misconceptions regarding the magnitude of numbers that have an 

infinite decimal representation. 

THEORETICAL BACKGROUND 

Current research tends to focus on the counterintuitive nature of infinity, particularly 

on students’ reasoning as they confront well-known paradoxes or issues of cardinality 

(Dreyfus and Tsamir 2004; Dubinsky, Weller, McDonald, and Brown, 2005; Fischbein 

2001; Fischbein, Tirosh, and Hess, 1979; Tall 2001). To the best of my knowledge, 

only a few studies examine students’ conceptions with regard to infinity in a 

geometrical context (see Dreyfus and Tsamir, 2004; Fischbein, Tirosh, and Melamed, 

1981; Tall, 1980; Tirosh, 1999; Tsamir and Tirosh, 1996). Tsamir and Tirosh (1996), 

for instance, explored students’ intuitive decisions when comparing geometrical 

objects such as squares of different sizes. In a similar study, Fischbein et al. (1979) 

observed students drawing a one-to-one correspondence between line segments of 

different lengths. Their conclusions supported the claim of Fischbein et al. (1981) that 

an intuitive leap is necessary to establish meaning about infinity.  
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In my research, I build on several theoretical perspectives. The first framework 

introduced is Tall’s (1980), which interprets intuitions that extrapolate experiences 

with finite measurements. In Hazzan’s (1999) perspective, the use of familiar 

procedures to make sense of unfamiliar problems is an attempt to reduce the level of 

abstraction of certain concepts. She suggested that the tendency to apply familiar 

procedures – such as those of finite measurements – is indicative of a process 

conception. Process and object conceptions of infinity are characterized by APOS 

theory, another of the theoretical perspectives referred to. Dubinsky et al. (2005) 

proposed that process and object conceptions of infinity correspond, respectively, to an 

understanding of potential and actual infinity. Extending on these topics, my study 

examines students’ naïve responses to tasks such as considering the number of points 

“missing” from the shorter of two line segments.  

Tall’s “Measuring Infinity” 

As indicated, much of current research on infinity in mathematics education focuses on 

students’ understanding of cardinal infinity. Tall (1980) suggested an alternative 

framework for interpreting intuitions of infinity that instead extrapolates measuring 

properties of numbers. Many of our everyday experiences with measurement and 

comparison associate “longer” with “more.”  For example, a longer inseam on a pair of 

pants corresponds to more material. Likewise, a longer distance to travel corresponds 

to more steps one must walk. Tall (1980) proposed extrapolating this notion can lead to 

an intuition of infinities of “different sizes,” but one that is contrary to cardinal infinity.  

A measuring intuition of infinity coincides with the notion that the longer of two line 

segments will have more points, though both have infinitely many. Tall (1980) called 

this notion “measuring infinity,” and suggested it is a reasonable, and indeed natural, 

interpretation of infinite quantities, especially when dealing with measurable entities 

such as line segments and points. With this interpretation, if a line segment has א many 

points, then a segment twice as long has 2א many points. This is different from cardinal 

infinity, which asserts any two line segments have the same number of points, א, 

regardless of length. Certainly, cardinal infinity admits different infinite magnitudes – 

the natural numbers, for example, have cardinality less than that of the real numbers. 

While at first, a measuring interpretation of infinity may seem at odds with cardinal 

infinity, it is consistent with properties of superreal numbers, a field extension of the 

real numbers that includes infinitely large and infinitesimal numbers. Moreover, 

infinite cardinalities and superreal numbers are linked via properties such as א = 2א . 

Recognizing such properties may be a fundamental aspect of encapsulating infinity, as 

explained in APOS theory in the next section.  

APOS Analysis of Infinity 

Dubinsky et al. (2005) proposed an APOS analysis of conceptions of cardinal infinity. 

They suggested that interiorising infinity to a process corresponds to an understanding 

of potential infinity, while encapsulating to an object corresponds to actual infinity. 

For instance, potential infinity could be described by the process of, say, creating as 
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many points as desired on a line segment to account for their infinite number. Whereas 

actual infinity would describe the infinite number of points on a line segment as a 

complete entity. Dubinsky et al. suggested encapsulation occurs once one is able to 

think of infinite quantities “as objects to which actions and processes (e.g., arithmetic 

operations, comparison of sets) could be applied” (2005, p.346). Dubinsky et al. also 

suggested that encapsulation of infinity entails “a radical shift in the nature of one’s 

conceptualisation” (2005, p.347) and might be quite difficult to achieve. This 

theoretical perspective, as well as Tall’s (1980) “measuring infinity,” will be used 

throughout the study to interpret students’ intuitions, and their attempts to reduce the 

level of abstraction of properties of infinity.   

SETTING AND METHODOLOGY 

The participants of this study were first year undergraduate university students 

enrolled in a mathematics foundation course. The 24 pre-Calculus students were 

unfamiliar with set theory and had no prior experience investigating properties of 

infinity in a mathematical context. None of the participants were mathematics majors.  

Data collection relied primarily on a series of written questionnaires designed to elicit 

students’ naïve conceptions of infinity. One of the aims of this study was to determine 

what sort of connection, if any, participants made between a geometrical 

representation of infinity and a numerical one. In other words, the question of whether 

students were associating points on a line with values on a number line was considered. 

The rationale behind administering a series of questionnaires throughout the span of 

several weeks was to determine if and in what ways students’ ideas may change as a 

result of personal reflection. In order to avoid swaying students’ responses, very little 

instruction was provided and it was made clear that there was no one “right” answer 

being sought.   

The series of questionnaires was designed in such a way as to provide students with an 

opportunity to reflect on their ideas. Certain questions recalled students’ previous 

responses and presented them with a slight twist. The rationale for this was to confront 

students with some of the counterintuitive properties of actual infinity that came up in 

their musings. Questions also took the form of presenting students with an argument 

that claimed to be from one of their peers, and asked them to evaluate and discuss the 

ideas involved. The basis for this style of question was to avoid presenting an 

authoritative position. It was imperative to this study that students’ responses were not 

affected by seemingly correct solutions. The students addressed each issue based on its 

appeal to their own naïve ideas.  

This paper focuses on students’ responses to two particular questions. The first 

question (Q1) confronted students with an idiosyncrasy of infinite quantities and asked 

for an explanation. Of particular interest was the response of one participant, Lily. Her 

attempt to formulate an argument that was consistent with her experiences and 

intuitions prompted a follow up to this questionnaire. In Q2 students were asked to 

respond to Lily’s argument as well as to a variation of it. 
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RESULTS AND ANALYSIS 

The questions addressed here were posed towards the end of the course.  By this time, 

there was a shared understanding that a line segment contains infinitely many points. 

Q1 addressed students’ responses as they compared the infinite number of points on 

two line segments of different lengths. 

Q1 and analysis of Lily’s response  

In an effort to explore conceptions of what it may mean for a line segment to have 

infinitely many points, students were asked to consider the number of “extra” points on 

the longer of two line segments. 

Q1.On a previous question, you reasoned that two line segments A and C both have 

infinitely many points.   

 

Suppose that the length of A is equal to the length of C + x, where x is some number greater 

than zero. You also previously suggested that the segment with length x has infinitely 

many points. That is, the ∞ points on A minus the ∞ points on C leaves an ∞ number of 

points on the segment with length x. Put another way,  

∞ - ∞ = ∞ . 

Do you agree with this statement? Please explain. 

Of the various responses to this question, Lily’s stood out. Lily was a thoughtful 

student who was not particularly strong in mathematics. In one of the first 

questionnaires, she stated the length of the line segment was equal to its number of 

points. In her response to Q1, she disagreed with the possibility that ∞ - ∞ = ∞. She 

wrote: 

I disagree with this statement. For example, π is an infinite (on going) number. If we 

subtract π – π the answer is 0, NOT ∞ . But, if there is a restriction that says we can’t 

subtract by the same number it could still be an infinite number, but just a smaller value. 

For example, π – 2π = -π, is still an infinite number, only negative. 

Lily reasoned that since π is an “infinite (on going) number” and π – π = 0, then the 

difference ∞ - ∞ must also be 0. In Lily’s conception, an “infinite number” appears to 

be a number that has an infinite decimal representation. Her objection to Q1 seems to 

stem from confusion between an infinite magnitude, such as the number of points on a 

line segment, and the infinite number of digits in the decimal representation of π. Her 

use of π to justify claims about infinite magnitudes suggests she has not made a 

connection between points on a line segment and values on a number line. Not only did 

she overlook the particular value of π itself, but she also failed to distinguish the 

differences between acting on one specific element as opposed to infinitely many. 
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Lily’s generalization of properties of π to draw conclusions about the entire set of 

points is likely an attempt to reduce the level of abstraction of dealing with an infinite 

number of elements. The use of one number to explain properties of infinitely many 

coincides with Hazzan’s (1999) observation that students will try to reduce the level of 

abstraction of a set by examining one of its elements rather than all of them. It is 

possible that addressing the entire set of points on a line segment as an entity itself may 

not be feasible at this stage of Lily’s concept formation. Her use of the qualifier “on 

going” to describe her notion of an “infinite number” is evidence that she maintains a 

process conception of infinity.  

Another interesting aspect to Lily’s response was her use of “restrictions.” She 

proposed that the difference of two “infinite numbers” might be another “infinite 

number” if there are appropriate restrictions placed on the quantities. By restricting the 

“value of infinities” she reasoned that it is possible to attain “an infinite number, it 

[will] just be a smaller value.” For instance, she noted that a line segment with 

“missing points” may still have infinitely many points, just fewer than the longer 

segment. This idea is consistent with an intuition of measuring infinity (Tall, 1980). 

Also, Lily’s responses are consistent with the observation that students’ conceptions of 

infinity tend to arise by reflecting on their knowledge of finite concepts and extending 

these familiar properties to the infinite case (Dubinsky et al. 2005; Dreyfus and Tsamir 

2004; Tall 2001; Fischbein 2001; Fischbein, Tirosh and Hess 1979). The use of 

familiar concepts and procedures to describe the unfamiliar properties of infinity is an 

example of Hazzan’s (1999) “reducing abstraction”. In this case, Lily applies the 

familiar procedure of subtraction not to the transfinite number א, but to the real number 

π, thereby reducing the level of abstraction of working with the infinite number of 

points on a line segment. 

Q2 and Lily’s classmates 

Lily’s confusion between an infinite number of elements and an infinite number of 

digits in one particular element provoked my curiosity. The question of whether other 

students shared Lily’s misconception naturally arose. Thus, a follow up questionnaire 

(Q2) recalled Q1, presented Lily’s argument verbatim, as well as a similar one, and 

asked students to elaborate on whether or not they agreed with the arguments.  

Q2. Recall Q1. 

Student X: [Lily’s response as quoted above] 

Student Y:  I disagree with this statement. You can subtract two infinite numbers and NOT 

end up with ∞. For example, 1/3 is an infinite number, but 1/3 – 1/3 = 0, NOT ∞. Also, 4/6 

and 1/6 are both infinite (on going) numbers, but if we subtract 4/6 – 1/6 = 3/6 = ½ = 0.5, 

which is not an infinite number. But sometimes it’s possible to subtract two infinite 

numbers and get an infinite number. For example, 1/3 – 1/6 = 1/6, which is infinite and 

smaller than 1/3. So, sometimes ∞ - ∞ = ∞, but usually not. 

Surprisingly, most participants agreed with at least one of the arguments above. The 

failure to distinguish between infinite magnitude and infinite decimal representation 
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was shared by 22 of the 24 participants in this study. Two distinct interpretations of 

“infinite numbers” were observed. For the students who agreed with both arguments, 

the confusion between infinite magnitude and infinite decimal representation was 

broad: they ignored the finite magnitude of both rational and irrational numbers. For 

instance, Jack wrote: 

4/6 and 1/6 are both infinite (on going) numbers but when subtracting them your result is ½ 

which is not infinite. This proves that an infinite number subtracting by another infinite 

number is not always another infinite number. As a result the statement ∞ - ∞ = ∞ is not 

true because sometimes the result is infinite but a different value and other times the result 

is not infinite. 

Again it is clear that the differences between a particular (finite) value and an infinite 

quantity are being neglected. Also, this response highlights the common notion that 

infinity has no specific value. In particular, Jack seems to use the ∞ symbol to represent 

numbers of different magnitude. This and similar responses revealed that students were 

not only extrapolating their experiences with finite quantities, they were using them 

explicitly to justify their intuitions of infinity.  

Conversely, there were students who recognized rational numbers as finite quantities 

but confused irrational numbers with infinite quantities. Students who agreed with 

Lily’s argument but disagreed with Student Y associated rational numbers with points 

on a number line but did not make the same association with irrational numbers. This 

impression was exemplified in Rosemary’s response to Q2. 

Rosemary: π – π = 0 that is correct because one is taking away the same amount of points 

from what they initially began with will give 0, but in the line segment question, the 

amount of points in x (which is ∞ amount) is much less than the amount of points in A and 

C. Which because of this, I agree with Student X’s second statement of how there should 

be restrictions. In this case, points in x are less than points in A or C. Student Y states: 1/3 

– 1/6 = 1/6 (which is an ∞ number) but 4/6 – 1/6 = 3/6 (which is only 0.5 and not an ∞ 

number). Well, when we represent these numbers on a number line [drew two line 

segments, one from 0 to 1/6 and one from 0 to ½, and labelled the segments A and B, 

respectively] then won’t both line segments have ∞ points? (But of course segment B will 

have more than segment A) 

Rosemary was a high-achiever who had consistently expressed the opinion that line 

segments had infinitely many points. She realized prior to Q1 that her arguments 

supported the counterintuitive ∞ - ∞ = ∞, and after reflecting, she rationalized the 

expression by invoking a measuring intuition. In her response to Q1, she claimed that 

while any line segment will have infinitely many points, a longer segment would have 

a larger infinite number of points. She also alleged that subtracting an infinite quantity 

from another (albeit “larger”) infinite quantity would leave “a lot of points… 

extending into infinity,” and “it will take forever” to count them. These last two 

statements pertain to a notion of potential infinity, and suggest a process conception. 

 In her response to Q2, Rosemary related Lily’s notion of restrictions to her own 

measuring conception. Placing restrictions on the symbol used to represent the infinite 
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number of points on each line segment accommodated the possibility that a longer line 

segment will have a greater number of points. Like Lily, Rosemary used π to reduce the 

level of abstraction of ∞ - ∞ = ∞ . As she stated, “taking away the same amount of 

points […] will give 0” just as π – π = 0.  

Rosemary also reiterated her thoughts regarding measuring infinity when she 

addressed Student Y’s argument. In this case, however, she did not use the rational 

numbers analogously with infinite quantities, as she had used π. Although Rosemary 

stated that 1/6 was an “infinite number,” she observed its specific value on the number 

line. Similarly, she remarked that though ½ was not infinite itself, when represented on 

a number line there were still infinitely many points between 0 and ½. This distinct 

handling of rational and irrational numbers suggests a serious misconception about real 

numbers: whereas rational numbers were associated with points, irrational numbers 

were not. Furthermore, Rosemary seemed to use the words “infinite number” in two 

different ways: to represent the number of (nonzero) digits in a decimal representation, 

as well as to represent the number of points in a line segment. It would be interesting to 

see if Rosemary’s measuring conception would be so resilient had she not applied the 

same terminology to two distinct notions. 

CONCLUSION 

Confusion between the infinite magnitude of points on a line segment and the infinite 

decimal representation of particular numbers is a significant obstacle to students’ 

understanding of several mathematical concepts. Not only does it hinder an 

appreciation or even recognition of properties of actual (cardinal) infinity, but it also 

demonstrates a shortcoming in the conception of number. The use of a finite quantity to 

explain phenomena of infinite ones misguides students’ intuitions and ultimately their 

understanding. While “measuring infinity” may indeed have a distinguished place in 

mathematics research, intuitions that rely on numbers, or merely a number, are 

dangerous to the progress of mathematical reasoning about infinity. The various 

attempts to reduce the level of abstraction of infinitely many points by considering 

properties of a single point have, in the cases discussed here, revealed an intuition of 

infinity that may be at odds with future instruction on limits and set theory.  

Certainly, the importance of establishing an apt understanding of number, magnitude, 

and infinite quantities is not trivial. It has been well established that when formal 

notions are counterintuitive, primary, inaccurate intuitions tend to persist (see among 

others Fischbein et al., 1979). Moreover, individuals may adapt their formal 

knowledge in order to maintain consistent intuitions (Fischbein, 1987). Fischbein et al. 

(1981) stressed that intuitive interpretations are active during our attempts to solve, 

understand, or create in mathematics, so it is clear that for the sake of advancing 

mathematical understanding, adequate intuitions must be developed.   

This study opens the door for further investigation of some issues that may be 

over-looked or taken for granted, such as the relationship between magnitude and 

representation, and the connection between points on a number line and numbers. 
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Moreover, it provides insight into one naïve perception of infinity and its intuitive 

acceptance to pre-Calculus students. 
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This study compares the ability of sixth grade students in Korea and in Israel to cope 

with tasks which require the use of number sense. Results suggest that Korean 

students showed a preference of using exact calculations. The percentages seem to 

decrease dramatically, when students were explicitly asked not to use exact 

calculations, although it bounced back when there was no guidance. The Israeli 

students tended to use more of number sense considerations and less of calculations 

also in tasks in which there was no specific guidance on the strategy to be used.  

INTRODUCTION 

One of the mathematical issues which received increasing attentions in the last years 
in the field of mathematics education is the topic of number sense. Number sense is 
associated with the ability to understand the relationships between numbers; between 
numbers and operations; to work with numbers in a flexible way; to move from one 
representation to the other; to develop useful and efficient strategies for dealing with 
numbers and to judge the results to be reasonable within the mathematics and also in 
regard to everyday life (Markovits & Sowder, 1994; Reys et. al, 1999). 

Despite the importance of number sense as being essential for life skills and its 
potential in developing mathematical thinking, it seems that emphasis of mathematics 
curriculum in elementary school is still mostly on computational algorithms and 
procedures. Reys and Yang (1998) investigated the relationship between 
computational performance and number sense among sixth and eighth grade students 
in Taiwan. They found that students' performance on tasks requiring written 
computation was significantly better than on similar tasks relying on number sense. 
Reys et.al (1999) compared number sense proficiency of students aged 8 to 14 years 
in Australia, Sweden, United States and Taiwan. They found, as expected, that the 
performance levels on the items varied across the countries, but also that regardless 
of country variable, students exhibited low performance on the number sense tasks.  

Mathematics is being studied across the world. Almost in all countries children start 
the learning of mathematics in preschool and continue to learn mathematics in 
elementary school then in junior high school and in high school. Although 
mathematics is basically the same mathematics, textbooks differ from one country to 
the other, the ways teachers teach mathematics are not the same as well as are the 
ways in which teachers are prepared to teach mathematics. Ma (1999) found that 
American teachers who were mathematics majors no better coped with mathematical 
tasks than Chinese teachers who were not. Moreover, the Chinese teachers had better 
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understanding of fundamental mathematics. Cai (2000) found that U.S. students and 
Chinese students performed differently on different tasks and used different strategies 
and representations to solve problems. The findings can be explained (Cai, 2004) due 
to different beliefs hold by the teachers.  

In this study we report the ways sixth grade students from Korea and Israel cope with 
tasks which involve number sense. This report is a part of a larger study aiming to 
compare the ways in which sixth grade students from both countries cope with 
routine tasks, with number sense tasks and with questions regarding their beliefs 
about mathematics. The comparison turns to be interesting since Korean students 
keep doing very well on international tests, while Israeli students are ranked much 
lower on the list (e.g., Mullis, et al., 2000). 

METHODOLOGY 

Subjects 

275 sixth grade students participated in the study, with 138 Israeli students from five 
elementary schools and 137 Korean students from four elementary schools. The 
schools in Israel and in Korea which were chosen for this study were classified as 
“typical schools" meaning average in the sense of students' abilities and in the sense 
of socio-economic background.  

Questionnaire 

A written questionnaire containing 30 open-ended tasks: 12 routine tasks, 12 number 
sense tasks and 6 belief questions, was developed and given to the students. The 
routine tasks (in which the students were asked to apply exact calculations in order to 
solve exercises involving whole numbers, fractions and decimals) were the first tasks 
on the questionnaire,  followed by the number sense tasks and then by the belief 
questions.  

The number sense tasks included in the questionnaire are listed below: 
1.   Fill in < or = or > and explain how did you decide which sign to fill in. 
                  4926 + 327 + 5909 + 3207              327 + 5909 + 3207 + 4926 

2.   Fill in < or = or >. Is it possible to choose the sign  without performing    
      the exact calculation? Explain.          12,456 : 498                  12,456 : 499 

3.   Fill in < or = or > and explain how did you decide which sign to fill in.  
   0.27  +  ¾           1 

4.   In the exercise    2 ¼ -  1 1/10 = 19/20     the result is incorrect. 

Do you need to use exact calculations in order to show that the result is 
incorrect, or is there another way? Explain. 

5.   Is it possible to choose 4 of the following numbers, such that their multiplication is      
     exactly 4355?   If so, find the numbers.  If no, explain why. 

. 14 9    12       5     8 
            15  28 10    4          2 
6.  Which of the following is closer to    0.52 X 809?   Explain. 
   a.   400        b.  1600        c.     430         d.   1700 
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7.   What is the result of:      4 3/4 + 13.6 + 7 2/8 - 7.9 + 4.3 = 

          Explain how you got the answer. 

8.   Fill in < or = or > and explain how did you decide which sign to fill in. 

                 17.014 – 3.948              17.013 – 3.984          
9.   Without using common denominator, arrange the following in increasing  
      order, from least to greatest, and explain how you did it. 

10

9
         

39

20
        

40

19
        0.75       

13

15
        

2

1
 

10.   Given the exercise     1008 : 36      
       Can you tell without doing the division, which of the followings have the same result                             

as the given exercise? Explain your answer for each item: 
       a. 2016 : 72   b.  3024 : 12    c. 504 : 18   same answer     / not same answer   

11.   A bookshop ordered 600 new books. The owner sold 3/5 of the books for  
        25.25$ each.      a.   Did he sell more than 300 books or less? How did you decide? 
         b.   Can one change the number of books in this problem to 724, and keep the rest 
of     
         the data?   Explain you answer. 
12.   The height of a 10 years old boy is 1.5 meters. What do you think his height will be   

   when he  is 20?  

As can be seen, the tasks include whole numbers, fractions and decimals, the four 
mathematical operations and two situations connected to real life. In almost all tasks 
there is a need to take into consideration the numbers involved and the operation or 
the situation but different tasks emphasize different aspects of number sense. In some 
of the tasks the student has to decide which part of the exercise is bigger (tasks 1, 2, 3, 
8) by using number sense considerations.  In others, the student can use estimation (6) 
and/or apply other number sense considerations (tasks 4, 5, 10), can use benchmarks 
when comparing fractions (task 9), apply an efficient way to add and subtract (task 7) 
and connect mathematics with real life (tasks 11 and 12).  

Actually all number sense tasks can be solved by using direct computations. One of 
the aims in this research was to find out what kind of strategies will be used by the 
students when dealing with the tasks. Will they use number sense considerations or 
will they prefer to apply exact calculations? Thus, in the first task we simply asked 
the students to put the correct sign and to explain how they did it. In the second task, 
in order to "push" them toward the use of number sense, we explicitly asked, if 
possible, to decide about the correct sign without doing the exact calculations.  In the 
third task we did not specify about the strategy to be used. As for the rest of the tasks, 
only in tasks 9 and 10 we explicitly asked not to use exact calculation.  

RESULTS 

We analyzed the answers given by the students as well as their solutions or 
explanations by establishing categories according to students’ responses. Here we 
present the answers and the explanations of Korean and Israeli students for some of 
the numbers sense tasks included in the questionnaire.   
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Tasks 1, 2, 3, 8 

In all these tasks the students had to choose the sign "<" or "=" or ">". Almost all 
students in both countries were able to put the correct sign in Tasks 1 and 2.  Tasks 3 
and 8 were more difficult for the Israeli students. As can be seen in Table 1 all 
Korean students answered the items (except of one student in Task 8) while some of 
the Israeli students did not answer items 3 and 8. 

  

Task 1 Task 2 Task 3  Task 8 Category 

Israeli 

students 

Korean 

students 

Israeli 

students 

Korean 

students 

Israeli 

students 

Korean 

students 

Israeli 

students 

Korean 

students 

No answer 0 0 2 0 13 0 14 1 

Correct  97 90 90 93 63 86 74 86 

Incorrect  3 10 8 7 24 14 12 13 

Table 1: Answers for Tasks 1, 2, 3, 8 in percentages 

When looking at the percentages of correct answer it is important to analyze what 
were the strategies used by the students, in order to realize whether the high 
percentages of correct answers were obtained by the use of numbers sense, or by the 
use of exact calculations, by which the task turns to be a routine one instead of a 
number sense task. In addition, it seems interesting to analyze the influence of the 
directions given to students on the strategy they used.  

Students who based their answers on exact calculations showed the calculations on 
the questionnaire. Some of the calculations were correct leading to the choice of the 
correct sign, while others were incorrect leading to an incorrect answer. The same 
situation occurred with students who used number sense considerations. In most of 
the explanations reasonable number sense considerations were used, for example: 
"There is no need to calculate. The numbers appear on each side one time in different 
order and the operation is addition" (Task 1). In others, the students did use numbers 
sense considerations but incorrectly, for example: "You subtract from a smaller 
number so the answer will be bigger" (Task 8). This student did not calculate but 
looked at the numbers. He did realize the difference between 17.013 and 17.014 but 
thought that the numbers to be subtracted are the same. Table 2 presents the 
explanations given by the students. The category of "exact calculations" includes both 
correct and incorrect calculations and the category of "number sense" includes both 
reasonable and unreasonable considerations. The numbers in parenthesis stand for 
correct calculations or reasonable number sense considerations. The table shows that 
more students used number sense considerations in Tasks 1 and 2 than in Tasks 3 and 
8, while in Task 3 the percentages are very low. One of the explanations might be the 
difference in numbers (whole numbers versus decimals and fractions). 
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Task 1 Task 2 Task 3 Task 8 Category 

Israeli 

students 

Korean 

students 

Israeli 

students 

Korean 

students 

Israeli 

students 

Korean 

students 

Israeli 

students 

Korean 

students 

No answer 0 0 2 0 13 0 14 1 

No 

Explanation 

1 2 4 3 9 3 13 5 

Number sense 91 

(91) 

68 

(67) 

86 

(82) 

86 

(84) 

23 

(21) 

14 

(9) 

62 

(56) 

50 

(47) 

Exact 

calculation 

6 

(6) 

30 

(23) 

1 

(0) 

9 

(6) 

38 

(30) 

79 

(75) 

5 

(4) 

36 

(29) 

Something else 2 0 7 2 17 4 6 8 

Table 2: Explanations for Tasks 1, 2, 3, 8 in percentages 

Another possible interpretation for the massive use of calculations in Task 3 can be 
related to the use of benchmarks. Research shows that students have difficulty in 
employing appropriate benchmarks such as 1/2 or 1/4, among several essential 
components of number sense. In Task 3, students from both countries experienced 
difficulty using the benchmark of 1/4 or 0.25, which might lead them to rely only on 
computation. 

The comparison among countries suggests that Israeli students tended more to use 
number sense than the Korean students did, while the Korean students tended more to 
perform exact calculations.  It is interesting to compare tasks 1, 2 and 3 among the 
Korean students by looking at the percentages of students that used number sense and 
the percentages of students that used exact calculations. In Task 1, 68% used number 
sense and 30% used calculations. This was the first number sense task in the 
questionnaire and the students were not told how to approach the task. In the second 
task the students were asked if possible to answer without performing exact 
calculations. 86% of the students used number sense and only 9% used exact 
calculations. In Task 3, again we did not specify the way of coping with the task. In 
this task, 14% of the students used number sense while 79% used exact calculations, 
suggesting that when explicitly told not to use exact calculations the most of the 
Korean students are able to come up with number sense considerations, but they 
prefer to use exact calculations. It seems that the Israeli students prefer to use more 
numbers sense than exact calculations.  In all items, with clear differences, less Israeli 
students compared with Korean students, used exact calculations. One of the 
explanations might be the awareness of Israeli students to number sense. Another 
reason has probably to do with the ability of Korean and Israeli students to perform 
exact calculations. In this research we have found that in all 12 routine tasks Korean 
students did better than the Israeli students did (Markovits & Pang, 2006). Probably 
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the Korean students know that they are good in computations and use it whenever 
possible while Israeli students try to avoid exact calculations and to find other ways.  

Task 6 

The analysis of the answers show that the Korean students did much better than the 
Israeli students did: 82% of them chose the correct answer while only 42% of the 
Israeli students did so. (18% of the Israeli students and 2% of the Korean students did 
not answer, and other students chose one of the incorrect answers). The strategy used 
by the students in the two countries can explain the differences in the percentages of 
correct answers. Table 3 presents the explanations given by the students. The 
numbers in parenthesis stand for the percentages of students who gave the correct 
answer. 

 

Category Israeli students Korean students 

No answer or no explanation 43 8 

Estimations 38 (28) 3   (1) 

Calculations 9 (5) 86 (79) 

Something else 10 3 

Table 3: Explanations for Task 6 in percentages 

In this task the students were not told how to reach the answer. As can be seen, 
almost all Korean students performed the exact calculation, which helped them to 
choose the correct answer. Only 3% of the students used estimation. As to the Israeli 
students, many of them did not answer or did not explain their way, but still about 
one third of them showed explicitly the use of estimation while only 9% performed 
exact calculations. 

Task 4  

In this task the students were explicitly asked whether they need exact calculations or 
if they can answer in some other way. Some of the students said that there is no need 
for calculations since " in 2 1/4 the 2 is bigger than the 1 and the 1/4 is bigger than 
the 1/10, so the result cannot be smaller than 1, and here it is less than 1". Answers 
like this we categorized as "complete number sense". Some of the students, who said 
there is no need for calculations looked at the whole numbers only. For example: "If 
you look just at the natural numbers 2-1 =1 and there is no natural number in 19/20". 
Answers like this we categorized as "partial number sense". Other students suggested 
that calculations are needed. For example: "I think that it will be better to calculate 
and then you really can see if the result is correct or not". Table 4 presents the results 
and shows that only 32% of the Israeli students and 57% of the Korean students said 
that there is need for calculations. Number sense was demonstrated by 35% of the 
Israeli students and by 28% of the Korean students. Once again it seems that the 
Israeli students tend to use less exact calculations 



Markovits & Pang 

PME31―2007 3-247 

Category Israeli 
students 

Korean 
students 

No answer  16 6 

No need for calculations: complete number 
sense 

13 10 

No need for calculations: partial number sense 22 18 

No need for calculations: something else 17 9 

Need calculations and performed the 
calculations 

32 57 

Table 4: Results for Task 4 in percentages 

DISCUSSION 

The analysis of the number sense tasks (the analysis presented here and the analysis 
of rest of the tasks) suggest a different approach as demonstrated by Korean and by 
Israeli students. The Korean students showed a preference of using exact calculations. 
The percentages seem to decrease dramatically, when students were explicitly asked 
not to use exact calculations, although it bounced back when there was no guidance. 
This might suggest that Korean students have the ability of using number sense, but 
they are not used to activate it. The Israeli students tended to use more of number 
sense considerations and less of calculations also in tasks in which there was no 
specific guidance on the strategy to be used.  This might suggest that Israeli students 
are more familiar with the use of number sense. This tendency might be explained by 
several factors. One explanation is probably related to the emphases of mathematics 
teaching and learning which have probably an influence on teachers' beliefs. In Korea, 
students are used to direct calculation in mathematics. Although the emphasis in 
computation in elementary mathematics becomes decreased in the current curriculum, 
skillfulness of computation is traditionally valued. This may explain why Korean 
students prefer direct calculation even with the tasks in which computation is not 
needed or ineffective. In Israel, at the time the questionnaire was delivered number 
sense was not a part of the curriculum or the textbooks (now it is a part of the new 
curriculum), but it was "in the air" in many in-service teachers' workshops. As a 
consequence, teachers could have addressed this issue in their mathematics lessons. 

Another factor might have to do with students' ability to cope with exact calculations. 
This research indicates that Korean students performed much better than the Israeli 
students did all routine tasks (Markovits & Pang, 2006). Perhaps Korean students are 
aware of their ability to reach the correct answer when they use calculations, while 
Israeli students are aware of their limits and look for other ways. 

Probably the use of exact calculations might also be explained by the difference in 
culture between the two countries. Another aspect which is probably strongly 
connected with the difference in culture is the tendency of Israeli students to skip 
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items even when the items were not at the end of the questionnaire. Korean students 
answered almost all items, and rarely skip an item. It seems that Israeli students relate 
less seriously to tests and to the need of completing all tasks. If a task seems difficult 
or unfamiliar many of them tend to skip it and move to the next item. In Korea it is a 
norm for students to complete all tasks seriously. 

This research raises other questions which needs more attention: the relation between 
the type of the number sense task and the ability of students to cope with it. On some 
of the number sense tasks in this research students exhibited good performance, this 
in contrary with the results described by Rey et. al (1999) in which poor performance 
on number sense tasks was exhibited  by students in several countries. Thus, can we 
analyze what makes a number sense task easy to cope with and what makes another 
task difficult?  

Yet another question has to do with the results of the international tests. How much 
of number sense is included in these tests? Are the students asked to explain their 
solutions so it can be seen whether they applied number sense considerations? This 
raises the issue of the difficulty in testing number sense. 

In order to better understand the results of this study we plan to investigate Korean 
and Israeli teachers’ content knowledge and pedagogical content knowledge 
regarding to routine tasks, number sense tasks, and beliefs toward several aspects of 
mathematics.  
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Because mathematics education devalues Indigenous culture, Indigenous students 

continue to be the most mathematically disadvantaged group in Australia. 

Conventional wisdom with regard to Indigenous mathematics education is to utilise 

practical and visual teaching methods, yet the power of mathematics and the 

opportunities it brings for advancement lie in symbolic understanding. This paper 

reports on a Maths as Story Telling (MAST) teaching approach to assist Indigenous 

students understand algebra through creating and manipulating their own symbols for 

equations. It discusses effective Indigenous mathematics teaching, describes the MAST 

approach, analyses it in terms of Ernest’s (2005) semiotic processes, discusses its 

applications, and draws implications for Indigenous mathematics learning.  

For the last few years, we have been researching ways to reverse Indigenous 

mathematics underperformance. Because mathematics teaching in Australia is 

Eurocentric (Rothbaum, Weisz, Pott, Miyake, & Morelli, 2000) and does not take into 

account the models of the world Indigenous people have created to inform their 

knowledge, many Indigenous students perceive mathematics as a subject for which 

they must become ‘white’ to succeed (Matthews, Watego, Cooper, & Baturo, 2005) 

and which can challenge their Indigenous identity (Howard, 1998; Pearce, 2001). 

Teachers tend to have low mathematics expectations of Indigenous students, blaming 

underperformance on absenteeism, social background and culture rather than 

themselves and the education system (Bourke, Rigby, & Burden, 2000; Sarra, 2003). 

As a result, few Indigenous students complete advanced post-compulsory mathematics 

subjects that lead to tertiary study in disciplines with a mathematics basis (Queensland 

Studies Authority, 2006) and only one Indigenous person, the lead author, has 

graduated with a mathematics doctorate.  

We have endeavoured to contextualise mathematics pedagogy with Indigenous culture 

and perspectives (Matthews et al., 2005) because this overcomes systemic issues of 

Indigenous marginalisation with respect to mathematics learning (Cronin, Sarra & 

Yelland 2002; NSW Board of Studies, 2000) and instils a strong sense of pride in 

students’ Indigenous identity and culture (Sarra, 2003), both are prerequisites for 

mathematics improvement. However, although we can contextualise algebraic 

applications through modelling (Matthews, 2006), contextualisation is not so apparent for 

the teaching and learning of formal algebraic structure and symbol manipulation.  

 
1
Project funded by Australian Research Council Discovery Indigenous Researchers 

Development grant DI0668328.  
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IMPROVING INDIGENOUS PERFORMANCE 

We are aware that effective mathematics teaching is crucial for Indigenous students’ 

futures as mathematics performance can determine employment and life chances 

(Louden et al., 2000). However, there is some ambivalence in the literature regarding the 

nature of effective Indigenous mathematics teaching. Indigenous students appear to 

learn best through contextualised concrete “hands-on” tasks (e.g., Day, 1996; Gool & 

Patton, 1998), “have greater sensitivity and success in dealing with visual and spatial 

information compared to verbal” (Barnes, 2000, p. 10), and “learn by observation and 

non-verbal communication” (South Australia DETE, 1999, p. 10). However, these 

findings may be an artefact of Indigenous students being taught in Standard English 

with which they may not have the words to describe many mathematical ideas (Roberts, 

1998) and the words they have may be ambiguous (Durkin & Shire, 1991). 

We are aware that school programs can dramatically improve Indigenous learning 

outcomes if they reinforce pride in Indigenous identity and culture, encourage 

attendance, highlight the capacity of Indigenous students to succeed in mathematics, 

challenge and expect students to perform, and provide a relevant educational context in 

which there is Indigenous leadership (Sarra, 2003). We recognise that non-Indigenous 

teachers with little understanding of Indigenous culture can have difficulties with 

contextualisation and reject it in favour of familiar Eurocentric approaches (Connelly, 

2002; NSW Board of Studies, 2000). Thus, we believe in building productive 

partnerships between these teachers and the Indigenous teacher assistants (ITAs) 

employed from the community to assist them (Warren, Baturo & Cooper, 2004). We 

have also had success with educating ITAs by focusing on structural learning of 

mathematics (Baturo & Cooper, 2004) and we are aware that Indigenous students tend 

to be holistic, learners, a learning style that appreciates overviews of subjects and 

conscious linking of ideas (Christie, 1995, Grant, 1997) and should appreciate 

algebraic structure.  

In our early Indigenous mathematics-education research, we focused on elementary 

mathematics and at-risk students. Our more recent projects have focused on assisting 

secondary school Indigenous students to use mathematics as a way of gaining high 

status employment. This has stimulated an interest on algebra for three reasons: (1) 

algebra is the basis of many high status professions; (2) algebra is based on 

generalising pattern and structure, skills with which Indigenous students may have an 

affinity because their culture contains components (e.g., kinship systems) that are 

pattern-based and which may lead to strong abilities to see pattern and structure (Grant, 

1997; Jones, Kershaw, & Sparrow, 1996); and (3) algebra was the vehicle whereby the 

first author mastered mathematics. As he reminisced:  

When reflecting back on my education, my interest in mathematics started when I began to 

learn about algebra in my first year of high school. … For me, algebra made mathematics 

simple because I could see the pattern and structure or the generalisation of algebra much 

clearer than the detail of arithmetic. 



Matthews, Cooper & Baturo 

PME31―2007 3-251 

SYMBOLS AND SEMIOTICS 

Our answer to the dilemma of contextualisng the teaching and learning of algebra was 

to focus on representing mathematical equations as stories which leads to 

contextualising of mathematical symbols. Thus, we developed an approach to 

symbolisation based on students creating and using their own symbols, drawn from 

their socio-cultural background, to describe these stories as a precursor to working 

with the accepted mathematics symbols. We now describe the Maths as story telling 

(MAST) approach and analyse it in terms of Ernest’s (2005) semiotic processes. 

Maths as Story Telling (MAST). The approach utilises Indigenous knowledge of 

symbols within domains such as sport, driving, art and dance as a starting point for 

building understanding of arithmetic symbolism in a way that can be easily extended to 

algebraic symbolism. The approach has five steps.  

Step 1. Students explore the meaning of symbols and how symbols can be assembled to 

tell and create a story. This is initially done by looking at symbols in Indigenous 

situations (e.g., exploring and understanding symbols in paintings) and then creating 

and interpreting symbols for simple actions (e.g. walking to and sitting in a desk).  

Step 2. Students explore simple addition story by acting it out as a story (e.g. two groups of 

people joining each other). A discussion is then generated to identify the story elements 

such as the different groups of people and the action (the joining of the two groups) and the 

consequences of the action (the result of the joining). 

Step 3. Students create their own symbols to represent the story. This step could be 

done in a freestyle manner; however, we have opted to take a more structured approach 

by using concrete materials (which are familiar to the students) to represent the objects 

(or people) in the story. The story is then created by allowing the students to construct 

the two groups of people with the concrete materials and construct their own symbol 

for “joining two groups” and lay this out to represent the action (or history) of the story. 

In a similar fashion, the students then construct their own symbol for “resulting in” or 

“same as” to tell the story of what happens after this action has taken place. Figure 1 

gives an example of an addition story that was constructed by a student in Year 2. 

Action/History

Result

Action/History

Result  

Figure 1. A Year 2 student’s representation of the addition story 6 + 3 = 9. 

Step 4. Students share their symbol systems with the group and any addition meanings 

their symbols may have. For example, in Figure 1, the student’s “joining” symbol was 

a vortex that sucked the two groups together. The teacher then selects one of the 

symbol systems for all the students to use to represent a new addition story. This step is 
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important to accustom students to writing within different symbol systems and to 

develop a standard classroom symbol system.  

Step 5. Students modify the story (a key step in introducing algebraic ideas) under 

direction of the teacher. For example, the teacher takes an object from the action part of 

the story (see Figure 1), asks whether the story still makes sense (normally elicits a 

resounding "No"), and then challenges the students by asking them to find different 

strategies for the story to make sense again. There are four possibilities: (1) putting the 

object back in its original group, (2) putting the object in the other group on the action 

side, (3) adding another action (plus 1) to the action side, and (4) taking an object away 

from the result side. The first three strategies introduce the notion of compensation and 

equivalence of expression, while the fourth strategy introduces the balance rule 

(equivalence of equations). At this step, students should be encouraged to play with the 

story, guided by the teacher, to reinforce these algebraic notions. 

Analysis in terms of Ernest’s (2005) semiotic processes. Because the students create 

their own symbol system, the MAST experience bypasses the first process of Ernest’s 

(2005) representation of Harre’s (1983) semiotic model of “Vygotskian space”, 

namely, appropriation. The MAST experience minimises the effect of the Ernest's 

fourth process (conventionalisation) so that students can freely express their creations 

and the meaning behind their symbol systems. The approach is designed to allow 

students to engage with Ernest’s second and third processes (transformation and 

publication respectively) for symbols they create before being required to undertake 

the full four processes for the universally-accepted mathematical symbol system. Thus, 

the MAST steps could be considered as “twisting the Vygotskian space” to refocus on 

creativity and the expression of this creativity.  

MAST Steps 3 and 4 are the essential steps that focus on transformation and 

publication. They enable students to: (1) create their symbols with personal meaning, 

by working backwards from meaning to symbol (and not forward from symbol to 

personal meeting as usually happens when learning the normal symbols); and (2) 

reinforce these personal meanings through sharing them with other students and 

sharing in the other students’ symbols, to see the personal in relation to the collective 

(and not in the collective). As such, the steps are a powerful semiotic method for 

teaching and learning mathematics (in Ernest’s, 2005, terms) because they are “driven 

by a primary focus on signs and sign use” (p. 23) and focused on how the students 

individually create, appropriate and openly express these symbol systems to a 

collective. Transformation and publication are important processes for MAST to 

encompass because they allow students to see: (1) beyond the “well-known 

pathological outcome of education in which learners only appropriate surface 

characteristics without managing to transform then into part of a larger system of 

personal meanings” (p. 25); and (2) a little of how a collective actively regulates and 

standardises symbols and their use. The variety of symbols experienced in the 

publication process in MAST Step 4 offers an opportunity for students to investigate 

commonalities across symbols systems, that is, to abstract at a high level. This 
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develops the essence of the semiotic approach (i.e., the meaning of symbols, the 

relationships between symbols, and their underlying rules and applications).  

MAST Steps 4 and 5 involve students discussing and critiquing each others’ symbol 

systems (being proponents and critics for each other in Ernest’s, 2005, terms) and, 

therefore, have the potential to develop high learning. As such, MAST introduces, very 

early on in the learning of symbols, the capacity to be creative and generate new 

expressions and possibly new meanings and structures within symbol systems.  

APPLICATIONS OF MAST 

MAST is the first product of the Minjerribah Maths Project which was set up to answer 

the following questions. Can we improve achievement and retention in Indigenous 

mathematics by refocusing mathematics teaching onto the pattern and structure that 

underlies algebra? In doing this, are there Indigenous perspectives and knowledges 

we can use? Can we at the same time provide a positive self-image of Indigenous 

students? MAST is our attempt to work from the story-telling world of the Indigenous 

student through to the formal world of algebra by experiences with the creation of 

symbols that have personal meaning. The story telling starts with simple arithmetic but 

moves quickly to algebraic thinking. It brings enables Indigenous students to bring 

their everyday world of symbols into mathematics.  

The Minjerribah mathematics project. The project’s focus is to put Indigenous 

contexts into mathematics teaching and learning (making Indigenous peoples and 

culture visible in mathematics instruction) and to integrate the teaching of arithmetic 

and algebra (developing the reasoning behind the rules of arithmetic while teaching 

arithmetic so that these can be extended to the rules of algebra). The overall aim is to 

improve Indigenous students’ mathematics education so they can achieve in formal 

abstract algebra and move into high status mathematics subjects. This project is being 

undertaken through an action-research collaboration with teachers at a rural 

Indigenous Years P-10 school by putting into practice processes to improve and 

sustain these enhanced Indigenous mathematics outcomes. The research is qualitative 

and interpretive and adopts the “empowering outcomes” form of Smith’s (1999) 

decolonising methodology which aims to address Indigenous questions in ways that 

give sustained beneficial outcomes for Indigenous people.  

MAST in the classroom. MAST has been presented at professional development (PD) 

sessions for teachers within eight Queensland schools and has been used within Year 2 

and Year 8 classrooms. Although results are preliminary, they appear to validate the 

potential we believe the approach has. Responses from teachers to the PD sessions 

have been overwhelmingly positive; no teacher has rejected the approach and most 

have been highly engaged in the activities. In particular, secondary teachers’ responses 

to the PD activities have led us to add extra steps to the approach to introduce and solve 

for an unknown group of objects, thus reinforcing the balance rule. Interestingly, 

MAST experiences appear to provide teachers with a deeper understanding of algebra. 

Three teachers who were not mathematically trained jointly said: This was the first 
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time we understood algebra. An English teacher said: For the first time, I can see that 

mathematics is creative like poetry.  

The Year 2 trial was a revelation. The Year 2 students enthusiastically worked with the 

teacher to construct symbols to tell the story of one of their number walking into their 

classroom and sitting at her desk. They equally eagerly constructed symbols for three 

of their number joining another two. They were able to do all the work and all the 

MAST experiences were successfully completed. Some of their symbols were 

particularly creative and they were able to discuss and solve the equivalence activities. 

In fact, they were the first group that suggested the third strategy of adding another 

action; we had not thought of it. Interestingly, the teacher did not stipulate the use of 

materials to represent numbers and half the Year 2 students’ first symbols were not 

linear (see Figure 1). For example, one student drew 2 circles and then drew 3 students 

in one circle, 2 students in the other and 5 where the circles overlapped, making the 5 

between the 2 and the 3. Students who did non-linear drawings like this were able to 

change to linear, as in Figure 1, when the teacher stipulated this in the second part of 

the lesson.  

For the Year 8 students, the MAST experiences provided a method for understanding 

more complicated equations as well as an introduction to symbols. This was shown 

later when a student asked why equation 2x = 8 was divided by 2 to find x. The teacher 

directed the student to represent the equation in a quasi creative manner with two x’s on 

one side of a line and 8 circles on the other. The student was then able to see that 

dividing both sides by 2 will give the value of x. The teacher argued that this could not 

have been done without the students' having previously experienced the MAST steps 

and created novel representations of equations.  

IMPLICATIONS 

The five MAST steps are an illustration of how the MAST approach could be used to 

introduce students to algebraic ideas, while the semiotic analysis indicates the 

implications of the approach for bridging the gap between arithmetic and algebra. 

Creating one’s own symbol system appears to be an effective way to introduce 

algebraic thinking to Indigenous students. In Ernest’s (2005) semiotic terms, it meets 

all the requirements for relational and high level understanding. With Step 1, MAST 

contextualised algebraic symbolisation (Matthews et al., 2005), an experience for both 

teachers and students as they explore symbols in the Indigenous world view. Such 

contextualisation could be difficult for non-Indigenous teachers (Bourke, Rigby & 

Burden, 2000; Connelly, 2002; NSW Board of Studies, 2000) but it would certainly 

make learning two-way strong, from teacher to students and students to teacher, a 

positive outcome for Indigenous learning (Howard, 1998; Pearce, 2001). Seeing 

Indigenous knowledge underlying the most abstract of mathematics could well lead to 

growth in self confidence and development of positive self image for Indigenous 

students that, in turn, may well assist to reverse Indigenous mathematics 

underperformance (Sarra, 2003).  
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We believe that MAST has implications for all learners (Indigenous and 

non-Indigenous). It appears to be a powerful way to assist all students move from 

arithmetic to algebra. By taking emphasis away from foreign systems, it shifts the 

emphasis to algebraic pattern and structure within something that is familiar. Step 4 is 

designed so that, conversation “can be fluid and shifting in its actualisation” with “near 

spontaneous verbal responses as well as other modes of response … sought and 

encouraged” (Ernest, 2005, p. 30). This, along with each student creating their own 

symbolism, should provide a feeling of freedom within the MAST activity. In any case, 

MAST is a worthwhile activity for the way in which it utilises agency in initiating 

action.  

However, it would be remiss of us not to mention an uncertainty in the approach; 

which is the process of translating from developed personal symbols to the 

conventionalised symbol system. This is a research question for this year: Are there 

disadvantages of moving away from appropriation in the Vygotskian space? 
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EXPLORING STUDENTS’ MATHEMATICS-RELATED SELF 
IMAGE AS LEARNERS 

Silvana Martins Melo and Márcia Maria Fusaro Pinto 

Universidade Federal de Minas Gerais – Brazil 

 

In this study we investigate the role of affects in mathematics classroom, from a 

socio-cultural perspective. We present data from a case study that aims to describe 

Camila’s different beliefs, feelings and attitudes related to mathematics, explaining  

the relation between them and mathematics learning in classroom. Research 

instruments included a written paper on a movie script about mathematics, worked out 

by students, which we found helpful in getting to know Camila.  As a result, we could 

explain why, in spite of the agreeable environment created in classroom by her 

mathematics teacher, she remains stable in her negative mathematics-related 

self-image as a learner.     

Introduction 

This paper reports ongoing research investigating the role of affect in mathematics 

education. We intend to explore a notion of students’ mathematics-related self-image 

as learners and its relation with their emotional processes in the mathematics 

classroom. 

Here, students’ mathematics-related self-image as learners refers to whom students 

believe they are, and to whom they would like others to believe they are, as 

out-of-school and school mathematics learners. In earlier study (Melo, 2003) 

supported by Charlot (2000) we investigate students’ rapport on school mathematical 

knowledge, through stressing the dimensions he defined as social, epistemic, and 

identity. From data analysis, the mathematics-related self-image appeared as a 

component of student’s relationship with mathematics which strongly interferes in 

their problem solving behavior. 

This current project consists of data analysis from a multiple-case study of 8 students 

out of two secondary school classrooms, in the same learning institution. In this paper, 

we present the case study of Camila, selected for the issue it raises on the relation 

between affective factors in the classroom and the teaching and learning of 

mathematics. 

In this paper, our research design is presented following the discussion of our 

theoretical perspective. Data analysis presentation starts by detailing Camila’s 

mathematics classroom dynamics, followed by our description of her experience in 

such context. We then examine Camila’s self-image as a mathematics learner, 

analyzing its’ role in the emotional processes she experiences in the mathematics 

classroom. 
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Research framework 

 

We found in the research literature on affects in mathematics education, a theoretical 

ground to describe the notion described above. We build it as a configuration (or a 

system) of mathematics-related beliefs (De Corte and Opt’t Eynde, 1996; Di Martino, 

2004), feelings and attitudes related to earlier mathematical experience. 

McLeod (1989) describes affects in mathematics education in terms of components he 

identified as beliefs, attitudes and emotions. His research has shown the importance of 

affect in the teaching and learning of mathematics. It represents an effort to overcome 

the Cartesian mind-body dichotomy, which isolate studies on cognition from those 

focusing on affective and emotional aspects of teaching and learning. Much has been 

done since then, although for some researchers, there still a need to respond what and 

how to observe when researching on affects (Di Martino, 2004).  

As a consequence of the variety of theoretical constructs and approaches, there still so 

far diverse theoretical structures being used to conceptualize affect in mathematics 

education (Hannula et.al.2004). In recent publication, different approaches 

complement each other to analyze a same case study.    

In our study, we explore the processes through which affective components develop 

and determine learning. This is done by attempting to describe the dynamics of a 

configuration of affective components (McLeod, 1989), relating it with students´ 

mathematical experience at school. 

We found in DeCorte & Op’tEynde (1996) exploratory study on mathematics-related 

beliefs systems an identification of different kinds of mathematics-related beliefs. We 

use their main categories to undertake our systemic analysis. 

Here we consider the notion of feeling as in Damasio (1994), accepting his distinction 

amongst feelings and emotions; considering the latter less stable and difficult to access. 

Feelings related to an object are seemed constructed from student’s perception and 

experiences as a starting point; and beginning with individual’s perception of the 

object.    

Our perspective as researchers is built on our understanding that affect is being (re) 

constructed through students experience with mathematics, in a socio-cultural context. 

In our study, we made an attempt to consider the individual-in-classroom as the unit of 

analysis.   

 

Research design 

 

The entire project is a qualitative study developed in a public school within a working 

class neighborhood. Participants are in their final year of the secondary school. Many 

of them intend to continue their studies at the university level. 

Two mathematics classes taught by the same mathematics teachers in this school were 

observed twice a week, during the whole academic year of 2006. Video recording was 

not allowed; so, field notes were taken during data collection. Yet procedures of data 

collected included an attitudinal questionnaire and a written task, both of which were 



Melo & Pinto 

PME31―2007 3-259 

handed to all students to be completed in the classroom, as well as individual 

semi-structured interviews. 

From classroom observation and learners’ responses to the questionnaire and to the 

written task, 8 students were selected and invited for the interviews. Interviews were 

set to convey the meaning expressed in the written material and in classroom 

behaviour.  

For the written task, students were handed two sheets of paper with the following 

instructions:  

“Suppose you are a movie director, and you decided to make a movie about 

mathematics. In order to run this project, you first need to write a movie script and to 

submit it to a producer. In the script, you need to define the cast, the details of each 

character, the running time, the genre (adventure, thriller, romance, terror, drama, 

comedy, fiction, detective, etc), the soundtrack, rating, and the plot, along with the 

main scenes. Now that you have the main clues, good luck in your work!”   

 

The context 

 

João, the school teacher participating in this study, is a young professional. 

Nevertheless, he is highly praised by the school director, students and even their 

parents. He is known not only for his skills in mathematics and as a mathematics 

teacher, but also for his good relationship with students. For this reason, he was chosen 

by the school director to participate in the study. He was invited to collaborate and 

accepted. First, he was to select the two classrooms to be observed. He decided on 

classroom 301, to whom he “enjoys lecturing”; and classroom 305, where students are 

often disperse and he describes as “being difficult to work”. Both classes are mixed (13 

boys, 24 girls in classroom 301; 14 boys and 23 girls in classroom 305). 

João provides opportunity for student interaction in his lessons. In spite of keeping a 

teacher centered style of learning, most of the time he encourages effective student 

participation. Students mainly ask questions about the homework. However, in many 

instances we could observe students guessing and formulating questions which were 

discussed by (nearly) the whole group, including the teacher. In another instance, when 

proving a theorem, João would invite: “…and now, what do you think I must do?”; 

most student responded by reasoning and building the mathematical argument. In each 

lesson, the affective relationship built by the students and the teacher during the 

presentation of each solution for the mathematical exercises seems to result in fun. 

In this environment, and during the whole academic year, Camila always chose to sit 

opposite from the teachers desk, in the first or the second row. She never participates in 

classroom debates and never asks the teacher to clarify her doubts, which she often has. 

On the other hand, she is a very organized student. Her work-book and homework are 

neat; she makes notes of everything written on the blackboard during the lessons, and 

she always attempts to solve the tasks proposed by the teacher. The following traits 
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best described Camila: her silence, her explicit absence in classroom debate,  and her 

(physical) distance from the teacher contrasted to her responsible though mute and 

physically distant participation in the classroom. To get closer to her, we present the 

analysis of her film script combined with a triangulation of data from the interview.  

 

Getting to know Camila 

 

Camila is a 17 yea old girl who likes fashion and is intending to study fashion design or 

interior design at a university. She must pass school exams to be promoted to the next 

school grade. Although she ever had to repeat a grade in her entire academic life, she 

considers herself a student with difficulties in mathematics.    

Camila wrote a short-movie script, with a 10 minute running time. According to her, 

her movie genre is “a mixture of thriller, terror and drama, which could be a comedy; 

depending on the perspective of the observer.” She proposes a free rating film, where 

“all scenes are main scenes, given that the movie is short”. Cast and characters are: 

Camila (same name as her), her father (no name) and João (same name as her 

mathematics teacher), conceived as:  

“João seems to be a good guy. Camila is for sure a good girl, an ordinary girl, who 

unfortunately hates mathematics and who does not have any vocation to study it. (She 

is) the exact opposite of João. Ah, and she is very shy”.  

The script for the main scenes: 

One day, Camila lives a drama: she has just seen the bad side of mathematics. 

On this day, she went home crying and her father cuddled her: 

-My daughter, it (the mathematics) is necessary, you need it for everything. Try 

to enjoy it, just a little bit, put an effort into it. 

-But I can´t, I can´t. 

From then on things just got worse: reasoning took longer, calculations were 

longer and became more and more complicated. 

Then, Camila met João. Before that day, she thought she did not like math; but 

after meeting him, she found she hated it. João is a good guy, hard worker, 

responsible and he loves mathematics. 

On the day of the math test Camila arrives to the classroom and she sits at her 

desk. The bell rings, and the exams are handed to the students. Camila looks at 

the exam and sees a bomb. Her head explodes, she cannot feel her right leg and 

she starts shaking and sweating. Thank God the examination is over, and 

thanks to me my test was a disaster. 
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But Camila does not give up. She studies, and studies, and studies, until 

achieving her dream: enjoying math a little bit, and she goes beyond that by 

becoming a mathematics professor at a Federal university. 

Well, I am Camila, and this is my story; [it is] nearly [my story], because I do 

not intend to become a mathematics professor.    

 

Analysis 

 

Camila is using her name and her teacher’s name for the characters in the cast. At the 

end of the script, a paragraph indicates it is based on her actual experience in 

mathematics. Field note observations about João, her actual mathematics teacher, are 

aligned with the script references to the character João, a guy who enjoys mathematics, 

and who has “vocation” to study it. We will refer to the movie characters as Camila (c) 

and João (c). 

 

Complementing our field notes, here we will get to know Camila through building her 

mathematics-related self-image as a learner. This is done as an affective configuration 

of mathematics-related self-beliefs, feelings and attitudes. 

 

First, we identified she believes that some people are born to do mathematics, and that 

she was not. She also states the commonsense thesis that “mathematics is a necessary 

subject”, and she believes that “enjoying it[mathematics] implies learning it”. 

Unfortunately, she dislikes mathematics. 

 

The “born to do mathematics” belief is suggested by Camila (c) who recalls she “does 

not have any vocation to study it [mathematics]”. Later in the interview, we captured 

Camila saying: “I do agree that some people really love mathematics and really … to 

enjoy mathematics you must be born to do it, and I wasn´t, isn´t it? I agree completely 

with this statement”. 

Yet Camila described a good mathematics student as someone who must “…study a 

lot…sometimes the person was already born to do mathematics …however I think that 

if you compare a person who was born [she emphasizes the word born] to do 

mathematics and study, with a person who just studies mathematics, the one who was 

born  [emphasis in the word born] to study mathematics, will do better than the one 

who just studies …” 

There is no explicit reason why or for what “Mathematics as a necessary subject”, 

when stated by the father during the first movie scene. Camila´s responsible attitude as 

a mathematics student indicates she might also believe this. The “enjoying implies 

learning” belief explains why she does not learn. In the last scene of the script, Camila 

(c) “studies, and studies, until she reaches her goal: to enjoy math a little bit”. 
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Feelings are negative, and expressed in two dimensions. First, somatic feelings in the 

movie script are detailed; such as the tears in the first scene due to the recognition of 

her incapacity to overcome difficulties, and the description of exam day. Anxiety also 

permeates Camila’s words during the interviews: “Well, ...I feel uncomfortable in the 

math class … you know .. it is a subject where I cannot find myself … I look at the 

watch … ai ...and specially on Mondays, when we have two lessons …then I become 

anxious, do you understand?” Second, there are feelings in relation to the others, such 

as those related to João. Attitudes in classroom are of being at the margins: “But I’m 

like that with everybody ...  especially with João .. with João never … never…never… 

with other teachers I ask for help…”.  

Camila’s explanation about her “never … never…never…” is as follows:  

“I think it is... because of mathematics. Ah! I don´t know … I think it is even because, 

you know … I think it is also because of closer contact with the teacher … like João 

…but there are some people in the classroom who have more contact …but not with 

me, do you understand? He is open minded … but I don´t know … I think it is the (lack 

of?) contact …like the chemistry teacher … Pedro …I talk to him …I ask for help …” 

 

Discussion 

From the analysis above, we make an attempt to explore the affective processes 

through which Camila’s self-image as a learner has developed and how it interferes in 

learning. Three issues are emerging: the cultural context shaping and being shaped by 

the mathematics-related beliefs, the relationship with others as one aspect of Camila’s 

relationship with mathematics, and her mathematics-related feelings.   

The configuration of Camila’s mathematics-related beliefs includes beliefs on 

mathematics as a social activity, on the significance of and competence in mathematics 

(De Corte&Op’t Eynde, 1996) and on an inborn nature of mathematical competence. 

The relevance of mathematics is explicit in Camila (c)’s father speech although there 

was no discussion on why and how mathematics is relevant. The father also suggests 

Camila(c) should enjoy mathematics, indicating an implicit belief on the learning of 

mathematics. Melo (2003) present data collected in our country, which are aligned 

with Charlot (2000) findings in France, where students claim they just enjoy 

mathematics if they understand it. Therefore, as commonsense statements, these 

beliefs are shaped by Camila (c) socio-cultural context, and thus, by Camila’s context. 

Her socio-cultural context allows so far the belief on an inborn mathematical 

competence. 

Beliefs and affective dimensions are constantly being reconstructed; although the 

processes are not homogeneously consolidated and do not shape identical individuals 

(Damásio, 1996). Individuals have a diverse re-elaboration of the same social 

influences; and even in the same socio-cultural context they build differently their 
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relationships with others. Camila met João, and unlike her classmates, she dislikes 

mathematics even more. For her, João represents someone who she recognizes as good 

guy, hard worker, responsible. Unlike her, he is a competent mathematics teacher and 

loves mathematics- a subject domain she does not grasp as she believes she should. She 

feels less than João, and excludes herself from the group of classmates who get 

involved in the classroom debate. 

This raises the important, though harmful in this case study, interference of social 

relationship (which includes relationship with others, values and expectancy) in 

mathematics-related feelings.   

 

Final Considerations  

 

In this paper we made an attempt to understand and describe Camila’s 

mathematics-related self-image as a learner. We analyze data from classroom 

observations, the film script, and the interview.  Thus we are able to identify beliefs 

which are grounded in her socio-cultural context and in her relations with others, as 

well as feelings built during her life experience with mathematics shaping her attitudes 

in the classroom. Through data analysis, we got to know Camila, who is a responsible 

secondary school student, though a silent (perhaps passive is a better word than silent 

as it seems she is not pro-active) mathematics learner.  

What strikes us as mathematics teachers, is the complexity of getting students involved 

in mathematical learning, as seen in the example of Camila. In spite of recognizing 

João as a good teacher, Camila does not engage in the agreeable atmosphere he is able 

to create inside the classroom; nor does João’s affective relationship with students 

during the lessons represent a positive emotional experience for her. She remains 

stable in her negative mathematics-related self-image as a learner, as if in a 

never-ending story which even an experienced  teacher is not being able to change.  
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DIFFICULTIES ON UNDERSTANDING THE INDEFINITE 

INTEGRAL 

N. Metaxas  

University of Athens, Greece 

 

Four first year students at a central Greek university are interviewed on basic facts 

concerning the abstract definition of indefinite integral to which they are exposed to at 

the 12
th
 grade. Using different lenses we examine their content knowledge and at the 

same time exploit the complementary approaches in interpreting our findings.  

INTRODUCTION 

Over the last decades several theoretical frameworks have been proposed in order to 

explain student’s ways of learning either by focusing on individual’s mechanisms of 

cognition and knowledge or by taking under consideration mainly socio-cultural 

aspects of mathematics learning. How can competing theoretical lenses function when 

applied to the same phenomenon? There is an interdependence of facts and theories in 

the sense that the same facts can support different theoretical perspectives. According 

to Sfard (2001) in many situations it is reasonable to try to use different approaches to 

understand learning in an attempt to find which one would provide a more helpful 

solution of the problem at hand. In this article we exemplify how analyses of the 

responses of four undergraduate students to some problems on the indefinite integral 

by using different theoretical perspectives can lead to different interpretations of 

students understanding. The two basic frameworks we chose to operate in are the one 

that (based on the Piaget’s notion of reflective abstraction) describe the cycle of mental 

construction using the “process – object encapsulation” (Tall, 2005) and the other is 

the “communicational approach to cognition” as described in Sfard (ibid.). For the first 

one we use two different descriptions of the cycle of mental construction: Sfard’s 

(1991)  interiorization, condensation, reification and Gray & Tall’s (1994) procedure, 

process, procept. For the communicational approach, learning is viewed as 

participation in certain distinct activities thus shifting the attention to the activity itself 

and to its changing context-sensitive dimensions (Sfard, 2001). The goal of this paper 

is twofold. The immediate goal is to investigate by using different theoretical tools   the 

difficulties students face when confronted with an abstract concept as the indefinite 

integral. The broader and more general goal is to explore the different (contradictory or 

complementary) perspectives that the above mentioned theoretical frameworks 

provide when applied on the same case. The article consists of three parts. The first part 

provides relevant background information about the problems posed   and the methods 

used. In the second part we analyse the students’ responses from both the cognitive 

science approach and communicational approach perspective. The last part confronts 

the two analyses and discusses the complementarity or incompatibility of the different 

approaches. We conclude by claiming that it is necessary to try both these approaches 
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when analysing students’ responses since they often provide useful insights depending 

on the questions asked. 

BACKGROUND 

In Greece 12
th
 grade students are introduced to the concept of indefinite integral 

according to the definition: indefinite integral of a function f continuous in an interval 

[a,b], is defined to be the set of all the anti-derivatives of f on [a,b]. Then tables and 

methods of integration follow which are accompanied by more theoretical – 

conceptual exercises. As in the case of other calculus concepts, the Greek curriculum 

emphasizes abstract handling of the integral which makes interesting what the students 

really understand after a year of teaching. Seven first year students of the Math 

Department were interviewed using a questionnaire comprised of three parts. In the 

first part, 3 simple indefinite integrals were asked to be calculated just to make sure a 

basic algorithmic understanding of the integral had been attained. The second 

consisted of the following four questions:  

Correct if necessary the following arguments Q.1 – Q.3 :  

Q.1 10
1
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1
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Q.2 ∫∫ ∫∫ ∫ ∫ ∫ =⇒=−⇒+=+= sinxcosxdxsinxdxcosx dxcosx 2cosxdxxscosxdxcosxdxdxcosx 2 in   

Q.3 : since ∫ f(x)dx0 =∫∫0∫ f(x)dx and ∫∫ dx0∫ f(x)dx =∫ =cdx0  and ∫ f(x)dx0 = 0  it follows 0=c.  

Q.4 : True or false: ∫ f -∫ f = 0 Elaborate.  Finally in the last part, they were asked to 

describe in their own words the definition and the role of the indefinite integral. The 

questions of part 2 were designed in order to create a learning situation involving 

elements of conflict and doubt. According to Fischbein (1987), the need for certitude is 

the basic component for learning. Doubt and confusion relate to cognitive conflict and 

conceptual change (Vosniadou, 2003). For Piaget (Piaget & Garcia, 1989) 

equilibration is a process that is stimulated by the disequilibrium that is caused by 

either inter or intra-personal conflicts. Following Zavlasky’s (2005) categorization of 

the types of uncertainty entailed in certain mathematical tasks, we used the “competing 

claims” type of uncertainty in the questions posed to the students. That is we used 

outcomes that contradict well known mathematical truths (as in Q.1: 0=1) or 

contradicting statements with which the subject was confronted (as in Q.4 when the 

student had answered True the remark was made by the interviewer “in math isn’t it 

always that A-A=0?”)  

RESULTS 

Each interview was audio taped and the verbal data were analysed in conjunction with 

students’ written answers. The goal was to describe patterns of interaction, and change 

in students’ use of mathematical language and concepts and track their level of 

understanding through discussion and argument. We will present some characteristic 



Metaxas 

PME31―2007 3-267 

points of the interviews from 4 students and analyse them through different theoretical 

lenses. 

Student M 

The student is asked whether the integrals, i.e. the sets dx
x∫

1,
1

 dx
x∫

+
1

1  are equal. 

M:  So in order the sets to be equal, the elements of the first set should equal the 
elements of the other. 

Interviewer:  So the two sets contain the same functions? 

M:  no, no. They don’t contain the same functions because the first is the 
integral of 1/x and the second is 1 plus the integral of 1/x,... they haven’t the 
same formula. 

Although student M remembers the set theoretic definition of integrals she is not 

capable of applying it in the right fashion, since she identifies the concept of function 

with its formula. This typical mistake, reveals a lack of the necessary encapsulation of 

the process of integration into a thinkable object in the sense of Tall (2004) or a 

non-reified object in the sense of Sfard (1991). The same student exhibits a similar 

procedural attitude towards the question B.2 : at first she answers that the result is true 

and when she is asked whether the fact that the derivative of sinx + c is also cosx would 

make her change her mind she argues as following: 

 Interviewer: So should we add a constant c here as in the previous case? 

 M: No, it’s not a solution of an equation; it’s just a simple implication. The fact 
that (sinx + c)′  also equals cosx is not relevant, I wouldn’t add the constant 
c anyway. 

Interviewer: the fact that sinx + c  is also an anti-derivative makes you consider that we 
should add in the result a constant?  

M: I believe no, the exercise is not asking for finding the set of the 
anti-derivatives but for proving something, I mean what we have here is the 
result of an implication, why consider a constant c ? 

As Sfard has remarked, at the first stage of understanding a new symbol, its use is 

mainly templates-driven and only some time later it can be object-mediated. In this 

sense the student probably has formed a cluster with templates of the indefinite integral 

coming from former uses where the usual procedure was to apply some integration 

formula and find a result following well established implications: the exercises and 

examples in the Greek school-books are mainly of this type. It is procedural thinking, 

in the sense of Gray and Tall (1994), that the student exhibits here: the focus is on the 

procedure and the symbol of integral can not be seen as representation of a concept and 

its process at the same time. According to the theoretical model of dynamics of 

cognitive sensitivity developed by Merenluoto & Lehtinen (2004), the student which 

had no relevant perception of conflict followed the third path of this model 

demonstrating low certainty and a routine activity without any adequate relation to the 

cognitive demands of the task. This is what Piaget (1975) termed as alpha level of 

understanding (or stonewalling according to Chan  et all (1997)). Obviously, what is 
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presented as contradictory data from the point of view of the interviewer is not 

considered as such by the student so it’s not enough to lead him to a meaningful 

conflict. 

Student A 

In dealing with the question Q3 student A changes his initial position after a lengthy 

conversation with the interviewer. Applying the definition he realizes the difference 

between the sets ∫ f(x)dx0 and ∫ f(x)dx0 : 

A: ...so this set ( ∫ f(x)dx0 ) must be the set of constant functions  

Interviewer: How many elements does it consist of?  

 A: infinite 

................................... 

A: ...and the set ∫ f(x)dx0 has only one element, the zero-function 

Interviewer: What is the relationship between these two sets, are they equal?  

A: Only if the constant equals zero 

Interviewer: But the first is an infinite set...  

A: Yes, so the first contains the second set 

Interviewer: How does this solve the conflict regarding the equation 0=c ?  

A: The zero belongs, so the equality holds for one case but not in any case, so 
we have a generalization failure? 

In spite of his procedural conception, student A with the help of his interlocutor 

understands the inadequacy of his initial statements regarding the equality of these sets 

and goes on to a reorganization of his knowledge. We could say that he is not far from 

a conceptual restructuring, what Piaget named level beta (Piaget, 1975) or implicit 

knowledge building according to Chan et al. (1997).Nevertheless three are two 

questions that can not be explained in this frame: why does he repeat his initial position 

(“Only if the constant equals zero”) even after his change of attitude and why is he 

concluding his statement with a question mark? If we interpret the change not as result 

of a cognitive but rather of a discursive conflict which contains as variables the use of 

words and the intended focus of discourse we could say that  student’s need for 

communication and the meta-discursive rule of the superiority of teacher-interviewer’s 

word are the principal drives behind student’s change. The student investigating the 

meaning of the expression ∫ ∫ =− 0ff is asked whether the equality A-A=0 holds for 

any mathematical objects: 

A: When we have an object A then the equation A-A=0 holds but here we have 
a set no such an object Interviewer: The set is it an object? Can I see it as 
an object?  

 A: No, as an object, I don’t think we can do 

Interviewer: Can you regard the set of all natural numbers as an object?  

A: ... no, we have an infinite number of natural numbers... 



Metaxas 

PME31―2007 3-269 

Interviewer: ... so in case we have a set containing an infinite number of elements, can I 
see it as an object? 

A: ... no, definitely no... 

 

Using the communicational approach as in Sfard (2001), A’s failure of understanding 

the object status of the indefinite integral is understood as a failure to communicate and 

probably this is a dialogue failure more than A’s failure. Student’s intended focus of 

discourse is on the infinite cardinality of the set which determines the way he sees the 

integral. On the other hand, the interviewer’s intention of creating a sense of ambiguity 

and conflict is not considered as such by the student. As Limon (2001) has remarked, 

students often fail to reach a stage of meaningful conflict, since what the teacher 

considers meaningful for his students cannot considered meaningful for them. 

On another level, the ‘met-before’ idea (Tall, 2004) of an infinite set and the 

misconception that such a thing can not be treated as an object has serious 

consequences for the development of the concept of integral. The student can not see it 

as a reified object and this suggests that his understanding is still at the procedural level 

not being able to compress the set theoretic and algorithmic faces of the integral into an 

amalgam like the procept. 

Student K 

Student K dealing with Q.4 uses a specific function and gets ∫ ∫ =− cff  which then 

argues that is the right answer:  

K: ...this equality ∫ ∫ =− cff  is too simple to hold for an indefinite integralֹ  

on the other hand this equality: ∫ ∫ =− cff  is more logical, more 

mathematical 

We see in accordance with the results of other studies like Healy & Hoyles (2000), that 

the more formalistic a formula is the more “valid” is in the eyes of many students. 

Although the student is not able to prove his claim, he insists on his belief even after 

questions by the interviewer which challenge her answer. The formal system of 

knowledge probably necessitates the existence of formalistic proofs and this often 

competes and prevails over the logic of the student himself. Afterwards, when asked if 

she ever felt the need to justify his claim by an example she emphatically answers: 

K: ...no, this is not something I usually do...  if it works with this way why 
bother search for an explanation? 

Her orientation towards the pure algorithmic level of definition and the process it 

implies instead of a more general proceptual way of thinking is obvious. Also the  

meta-discursive rule of following the implementation of any routine that simply works 

without any regard to its understanding is apparent here. 
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Student T 

In the same vein student T sees no apparent conflict between the definition of the 

integral and its use in computing specific values. In fact she states it, she computes “the 

values of every integral without bother thinking if any conflict arises. The following 

excerpt is characteristic: 

T: ... adding two integrals, which amounts to adding two sets is ...according 
the definition it is the intersection of the corresponding sets...   

Interviewer: ... so when you added these two integrals did you add them as two sets?  

T:  no, no, according to the tables 

Interviewer: ... so when adding two integrals do you see them as two sets that add up or 
something else  

T: ... no, I just add them up automatically using the formula-tables, I never saw 
them as sets although the definition describes sets ... actually it really 
crossed my mind once but I didn’t know how to explain it  

Interviewer: ... did you find it strange, I mean adding two integrals like adding two sets?  

T: well yes, it’s confusing but I just learnt what I needed to, I didn’t examine 
these details 

She exhibits low certainity to the conflict between her understanding of the definition 

(adding integrals as set intersection) and the way she solves integral problems (using 

the tables of integration) which unavoidably leads to a confusing and meaningless 

situation and to an implementation of a routine activity according to the Merenluoto & 

Lehtinen (2004) model. Also an existing gap between operational and structural 

conception (Sfard, 1991) of integral is evident here, since the student is not able to 

facilitate the dichotomy between the official definition and the algorithmic knowledge 

he uses in solving problems. In dealing with the question Q1 she quickly rejects any 

meaning for the subtraction of integral since it leads to a paradox (0=1) : 

T: Although in usual mathematics adding two opposite elements we always 
get zero, this is not what happens to the ∞-∞ case so we have something 
similar here subtracting two integrals   

Interviewer: And this explanation satisfies you or do you tend to seek it further ?  

T:  I am o.k. 

Interviewer: Do you feel any need to have a more intuitive confirmation to this 
statement? 

 T: No, I don’t think there should be something like this 

Using the same model by Merenluoto & Lehtinen (ibid.) we could characterize his 

reaction of connecting the indefinability of ∞-∞ with the present case as superficial 

construction that is based on more primitive met-before concepts which is 

accompanied by high certainity (no need to check intuitively the claim).This is what 

Chan et al (1997) call patching: noticing surface discrepancies and patching 

differences by ad hoc rationalizations. Once more her procedural and algorithmic type 

of understanding is revealed. Furthermore, her denial of any need for further checking 
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could mean the existence of a meta-discursive rule of no need for validating 

empirically – intuitively the formal methods and results. Her process like view of the 

integral is more clearly declared below:  

Interviewer: How would you best characterize the indefinite integral in a single word: 
object, process, tool, concept,.. 

T: process  

Interviewer: Is it an object like a function?  

T: No, because the set of functions that constitute any integral is infinite, so it 
can’t be an object 

The concept of integral is not reified and probably not even condensed succesfully in 

the sense of Sfard (1991) and this is relevant to the insufficient reification of a lower 

level concept: the infinite element set. Inadequate reification of the concept of set, 

necessary for building higher level structures, hinders the successful interiorization of 

the new concept of integral. 

CONCLUSION 

This was a part of a larger study including the views of a number of in-service teachers 

and post graduate students in math education. Although all 4 of the students presented 

above were high graders in the national university entry exams and solved easily the 

typical exercises of our first part, none of them had reified the concept of the indefinite 

integral. Their understanding was mainly procedural and it was not easy at all for them 

(though with different grades of difficulty) to handle the integral as an object. This 

goes the same way with their statements in part three where they characterize the 

integral mainly as a tool or a “technique to solving efficiently differential equations”. 

Considering the general emphasis of the Greek curriculum in formal ideas and the 

subsequent exercises on that style, this is even more astonishing. It seems that the 

definition the way it is given in the book is not “formally operable” in the sense of Bills 

& Tall (1998). Also, in some cases the inadequacy of lower level reification of the 

concept of infinite set was an obstacle to the higher-level interiorization of the integral 

concept. Using a different lens, the personal interpretation of words and the different 

intended focus of discourse are probably some of the factors that played crucial role in 

what could be seen as the failure to communicate. In this context the failure takes place 

between the textbook and the student and also between the teacher-interviewer and the 

student. As also is shown in other examples (Limon, 2001) in the efforts to teach 

conceptually difficult notions it is useful to use cognitive conflict techniques taking 

into consideration the cognitive distance between student’s prior knowledge and the 

new phenomenon to be learned. Otherwise insufficient synthetic models arise. All in 

all, the different outlooks though incommensurable when applied to the same case 

simultaneously, they provided us useful insights in the abovementioned cases. And 

since a simple model of explaining the act of understanding is far from near, exploiting 

the strengths of competing frameworks is clearly more than useful.  
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DETECTING THE EMERGENCE AND DEVELOPMENT OF 

MATHEMATICAL DISCOURSE: A NOVEL APPROACH 

Christina Misailidou 

Institute of Education, University of Stirling 

 

Six cases of development of pupils’ mathematical discourse are examined in relation to 

a proportional reasoning task. A discourse analysis approach is used that was 

specifically designed for this study by combining principles from Toulmin’s (1958) 

Gee’s (1999) and Backtin’s (1986) work and the use of Nu*dist software. Notable 

changes in the quality of argumentation are detected in all cases. The changes are 

attributed to the introduction during the discussion of a carefully designed pictorial 

model which was incorporated in the pupils’ discourse and eventually transformed it.      

INTRODUCTION 

The results reported here are part of a larger scale study with the aim to research and 

develop a proposal for effective teaching of the topic of ‘ratio and proportion’. The first 

part of that study involved research on diagnostic assessment of children’s 

proportional reasoning. The second part involved research on discussions within small 

groups of pupils. The pupils worked on selected ratio tasks and the discussions were 

coordinated by the author who also introduced tools that were hypothesized to 

facilitate the arguments within the group dialogue. The argumentation that stemmed 

from these discussions was analysed by using a discourse analysis approach that was 

designed specifically for this study. It combined principles from Toulmin’s (1958) 

Gee’s (1999) and Backtin’s (1986) work and the use of Nu*dist software.  

Selected products from that discourse analysis are presented in this paper. More 

specifically, the results come from six groups working collaboratively on an item 

called ‘Paint’. This item comes from a diagnostic test that we have constructed and it 

has been found to produce a high frequency of the error strategy called ‘constant 

difference’ or ‘additive strategy’(Misailidou and Williams, 2003). A pictorial 

representation of the item was used as a tool for facilitating discussion because 

previous analysis had shown it to make an unusually significant impact on the item 

difficulty. The quality of the pupils’ argumentation is examined before and after the 

introduction of the pictorial representation in the discussion. It is claimed that the 

pupils’ discourse was crucially affected by the pictorial tool.  

METHODOLOGY AND DATA ANALYSIS 

Groups of pupils were formed, whose responses to the ‘Paint’ item had been different 

on our previously administered and analysed diagnostic test, thus engineering conflict. 

Each group consisted of three pupils (aged 11-14 years old) and was involved in a 

researcher-guided discussion.  The children were set the task of persuading each other 

by clear explanation and reasonable argument of their answer. The researcher, 
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adopting the teacher’s role, established rules for the children’s argument in order to 

facilitate participation in discussion.  

The ‘Paint’ item was adopted from Tourniaire (1986) 

Sue and Jenny want to paint together. 

They want to use each exactly the same colour. 

Sue uses 3 cans of yellow paint and 6 cans of red paint. 

Jenny uses 7 cans of yellow paint. 

How much red paint does Jenny need? 

A pictorial representation of the item (shown in Figure 1 together with work from 

pupils) was used as a tool for facilitating discussion: the pupils could refer to it while 

communicating their ideas or could work on it with the aim of developing further their 

strategies. The tool was referred throughout the discussions as the ‘pictures-sheet’. 

         

Figure 1: The ‘pictures-sheet’ used in the group discussions  

The ‘Paint’ item provoked a high frequency of the error strategy called ‘additive 

strategy’. This is the most commonly reported erroneous strategy in the research 

literature related to proportional reasoning (e.g. Hart, 1984). In this particular problem 

the result of the additive strategy is the incorrect answer ‘10’ which can be obtained 

either by thinking 3+3=6 so 7+3=10 or 3+4=7 so 6+4=10. 

This paper we will focus on the pupils that made this error in test conditions and then 

participated in the group discussions on ‘Paint’. The pupils’ discourse during the 

‘group discussion’ is considered as an indication of the development of pupils’ 

reasoning. Their discourse was analysed by using Toulmin’s (1958) method. The 

utterances that made up the arguments were classified as ‘data’, ‘conclusions’, 

‘warrants’ and ‘backings’. Data are the facts that are requested as a foundation for the 
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conclusion. Warrants are the utterances which demonstrate that ‘taking the data as a 

starting point, the step to the…conclusion is an appropriate and legitimate one’ 

(Toulmin 1958, p. 98). Finally, backings are defined as the assurances that strengthen 

the authority of the warrants. The children's arguments were schematically represented 

using Toulmin's categories and then coded in order to assess changes in their 

argumentation. 

‘Discursive paths’ for each of the pupils that took part in the group discussions were 

composed and studied. A ‘discursive path’ is defined in this study as the evolution of 

the pupil’s argumentation in the discussion. Each discursive path is comprised by one 

or more stages. A ‘stage’ in a pupil’s discursive path is defined as a particular claim 

and possibly warrant and backing that a pupil offers at a certain point of the discussion. 

When the discursive features of either the claim, or the warrant or the backing change, 

a different stage ‘emerges’. A stage can roughly be identified as a pupil’s explanation 

for a particular answer for the task under discussion. 

Pupils are not considered to reason proportionally when they just give an answer which 

is the result of a multiplicative calculational process but only when, additionally, their 

argumentation indicates that they have conceptualised the task multiplicatively. After 

applying to the context of proportional reasoning and refining Cobb’s (2002) 

distinction of children’s mathematical discourse, four categories were found relevant 

to classify pupils’ explanations: 
1. Numerical explanation: The pupil explains a numerical performance for finding an 

answer to the task without justifying it contextually. 

2. Context-indexed, non multiplicative-indexed explanation.  The explanation is defined as 

‘context-indexed’ when the pupil’s discourse indicates a connection of numerical relations 

or performances to relevant contextual data from the task. The explanation is defined as 

‘non multiplicative-indexed’ when the pupils’ discourse indicates a non multiplicative 

conceptualization of the task: a conceptualization of the task context that may prohibit the 

construction of proportional relations.  

3. Context-indexed, pre multiplicative-indexed explanation. The explanations that belong 

in this category are context-indexed and also indicate a pre multiplicative 

conceptualisation of the task: the pupils have conceptualised the task ‘pre-multiplicatively’ 

when they can think relationally about quantities (for example in the Paint item they realize 

that more red paint than yellow is needed for a dark shade of orange), but not yet 

proportionally. 

4. Context-indexed, multiplicative-indexed explanation. The pupils’ discourse indicates 

that they conceptualized the task multiplicatively.  

The pupils’ utterances were studied as units of analysis and they were distinguished in 

the transcription text according to Bakhtin’s (1986) definition: An utterance has ‘an 

absolute beginning and an absolute end: its beginning is preceded by the utterances of 

others, and its end is followed by the responsive utterances of others’ (p.71).  

An important mediating element for the emergence of proportional reasoning is 

considered in this study the use by the pupils - during their dialogic activity- of a 
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language that indicates a focus on the contextual data of the task. Such pupils’ 

discourse is coded as context-indexed discourse throughout the group discussions and 

most importantly throughout the pupils’ discursive paths. More specifically, a pupil’s 

utterance was coded as ‘context- indexed’ when it contained words or sets of words 

that indicate (index) a consideration of the context of the task. In the group discussions 

concerning the task ‘Paint’ the pupils’ discourse was coded as ‘context-indexed’ when 

it mentioned or indicated: 

1.       The importance of colour. 

2. Different ways of using colour. 

3. Mixing colours. 

4. The importance of a ‘shade’ of a specific colour. 

5. Evaluation of resulting shades. 

For example utterances that contained phrases like ‘Sue’s got less yellow paint than 

Jenny’, ‘that one needs more red’, ‘it would be darker there’ were all coded as  

‘context-indexed’.   

In order to clarify the effect of the pictorial model on the flow of arguments two types 

of coding and analysis were performed. Firstly, each stage of each pupil’s discursive 

path was coded and the analysis focused on the difference of the discourse quality 

between stages before and after the introduction of the pictorial model in the discussion. 

During the second type of analysis, the appropriate utterances were identified and 

coded as ‘context-indexed’. Then with the help of Nu*dist, the amount of 

context-indexed discourse was calculated before and after the introduction of the 

model. 

RESULTS 

Six (out of 18) pupils that participated in the group discussions about ‘Paint’, gave the 

answer ‘10’ when tested prior to the discussions. Their written explanations led to the 

assumption that all of them used the ‘additive strategy’ in order to obtain the answer. 

Thus they were coded as ‘adders’.  As expected, at the beginning of each discussion all 

of them insisted on their chosen method for solving the task. All of them though, 

‘changed their mind’ during the discussions as indicated by their discourse in the 

transcription texts. All of them at the end of the discussions rejected their original 

answer ‘10’ providing context-indexed justifications and most of them accepted the 

multiplicative answer ‘14’ by providing again context-indexed explanations. 

In order to examine the role of the pictorial model in the difference of the pupils’ 

discourse quality, firstly, the adders’ individual discursive paths were constructed and 

then studied carefully. (An example of a detailed discursive path can be seen in 

Misailidou and Williams, 2004.) It was found that there was a difference of quality in 

their explanations before and after the introduction of the ‘pictures-sheet’. This is 
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demonstrated in Table 1 by presenting for each pupil the immediate stage before and 

after the introduction of the model. 

Change in argumentation 

 Before the introduction of the 

‘pictures-sheet’ 

After the introduction of the ‘pictures-sheet’ 

Hannah Stage 2 

4Numerical, non 

multiplicative-indexed explanation 

4Numerical backing 

Stage 3 

4Context-indexed, multiplicative-indexed 

explanation 

4Context-indexed, image-indexed  backing 

Heather Stage 1 

4 Numerical, non 

multiplicative-indexed explanation 

4 Numerical backing 

Stage 2 

4 Context-indexed, multiplicative-indexed 

explanation 

4 Context-indexed, image-indexed backing 

Addie Stage 2 

4 Context-indexed, non 

multiplicative-indexed 

4Context-indexed backing  

Stage 3 

4 Context-indexed, pre 

multiplicative-indexed 

4 Context-indexed, image-indexed  

backing 

Val Stage 1 

4 Numerical, non multiplicative - 

indexed explanation 

4 Numerical backing 

Stage 2 

4 Context-indexed, pre 

multiplicative-indexed explanation 

4 Context-indexed, image-indexed backing 

Rachel Stage 2 

4Numerical, (tentatively) 

multiplicative - indexed explanation 

4 No backing 

Stage 3 

4 Context-indexed, multiplicative-indexed 

explanation  

4 Context-indexed, image-indexed  

backing 

Faye Stage 1 

4 Numerical, non 

multiplicative-indexed explanation 

4 Numerical backing 

Stage 2 

4 Context-indexed, pre 

multiplicative-indexed explanation 

4 Context-indexed, image-indexed   

backing 

Table 1: Change in the adders’ argumentation 
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In the table, it can be seen that after the introduction of the ‘pictures-sheet’ in the 

discussion, the quality of each of the adders’ discourse has changed. Five (out of six) 

adders gave numerical explanations in their discursive stages just before the 

introduction of the pictures-sheet in order to justify their adopted strategies. All of 

them presented non multiplicative-indexed explanations except one whose explanation 

was coded as (tentatively) multiplicative – indexed. After the introduction of the 

pictures-sheet all of the adders presented a change in their discourse and moved to new 

stages in their discursive paths. All of them gave context-indexed backings, to support 

their chosen methods. Three of them gave pre multiplicative-indexed explanations and 

three of them gave multiplicative-indexed ones.   

It is noticeable in the table, that after the introduction of the pictures-sheet all of the 

pupils’ backings were coded as ‘image-indexed’ as well. In general, an individual’s 

utterance was coded as ‘image-indexed discourse’ when it contained  

1. words, or sets of words, or/and gestures that indicate (index) a consideration in the 

argument of the pictorial model (e.g. ‘pointing’ to and referring to the pictures of the 

model in order to explain their thinking)    

2. and/or actions on the pictorial model (e.g. drawing on it). 

The fact that after the introduction of the ‘pictures-sheet’ all the adders offered 

backings that were context-indexed as well as image-indexed is conceived as a further 

testimony of the influence of the model on the groups’ discourse. It is hypothesized 

that the discourse became context-indexed because it was image-indexed, i.e. because 

it referred to and made use of the model. In addition, some of the pupils confirmed 

during the discussion that they changed their mind because of the pictures-sheet. 

Heather, for example, declared: ‘I’ve changed because I got persuaded…[and 

later]…by a different method…by the pictures’. 

By studying in detail the text of the group discussions transcriptions it was noticed that 

the adders’ discourse in general (and not only their explanations as they appear in their 

discursive paths) appeared ‘more’ context-indexed after the introduction of the 

‘pictures-sheet’. To check this, the software Nud*ist was used to compare for each 

group discussion the amount of the group members’ context-indexed discourse before 

and after the introduction of the pictures-sheet.  This information is given in Table 2: 

PAINT 

Percentage of the utterances that were coded as ‘context-indexed discourse’ 

Group discussion No 1 2 3 4 5 6 

Percentage 

Before the introduction of the 

pictures-sheet 

9.4% 23% 7.4% 20% 19% 5% 

Percentage 38% 38% 39% 46% 24% 69% 
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After the introduction of the 

pictures-sheet 

Table 2: Context-indexed discourse before and after the ‘pictures-sheet’ 

From a quantitative perspective, it is considered important the fact that there is a 

difference in the figures before and after the introduction of the pictures-sheet for each 

group discussion. As no research of this type has been reported in the relevant literature 

there are no results with which these differences can be compared. Nevertheless, the 

fact that there are differences shows that a larger amount of the pupils’ discourse could 

be coded as context-indexed after the introduction of the pictures-sheet compared with 

their discourse before that. These figures indicate, in quantitative terms, that after the 

introduction of the pictures-sheet, the pupils’ discourse was transformed in the sense 

that it appeared to be more context-orientated. These observations support further the 

hypothesis that the pictorial model might have facilitated the articulation of 

context-indexed discourse. 

CONCLUSION 

Karplus et al. (1983) stress that some students decide to use (or not) proportional 

reasoning influenced by the easy (or difficult) numerical structure of the problem 

rather than its context. Therefore, in this study, the emergence, within the pupils’ 

dialogue, of the discourse that was coded as ‘context-indexed’ is considered essential 

for the development of their proportional reasoning.  

The results presented above show that the pupils’ context-indexed discourse increased 

after the introduction in the discussion of the pictorial model. In fact, the adders that 

participated in the discussions demonstrated a change in their discourse at the end, 

namely, context-indexed and multiplicative-indexed explanations. Furthermore, their 

backings became context-indexed as well as image-indexed. This is considered as a 

strong indication that the pictorial representation aided the pupils to discuss whether to 

use or not proportional reasoning based firmly on the problem context without being 

distracted by a possibly ‘difficult’ numerical structure.  

Discourse analysis approaches have already been used in researching mathematical 

argumentation as reported in the relevant literature but not in the area of proportional 

reasoning. More specifically, the method of analysis proposed in this study has not 

been reported before in mathematics education. It is proposed as a practical method for 

researching the pupils’ development of mathematical discourse in a context of group 

discussion where additionally a model is introduced because it is hypothesized as 

discussion facilitator.   
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THE NATURE AND ROLE OF PROOF WHEN INSTALLING 

THEOREMS: THE PERSPECTIVE OF GEOMETRY TEACHERS  

Takeshi MIYAKAWA and Patricio HERBST 

University of Michigan, USA 

 

We report preliminary results of research on the underlying rationality of geometry 

teaching, especially as regards to the role of proof in teaching theorems. Building on 

prior work on the classroom division of labor in situations of “doing proofs,” we 

propose that the division of labor is different in situations when learning a theorem is 

at stake. In particular, the responsibility for producing a proof stays with the teacher, 

who may opt to produce the proof in a less stringent form than when students are doing 

proofs and who may do so for reasons other than conferring truth to the statement. We 

ground this claim on reactions from experienced geometry teachers to an animated 

representation of the teaching of theorems about medians in a triangle.  

INTRODUCTION AND THEORETICAL FRAMEWORK 

Classroom instruction relies on a basic division of labor vis-à-vis the knowledge at 

stake (the teacher teaches, the students study, and the teacher attests to their learning) 

that gets further specified (in terms of who does what and how) depending on the 

particular kind of symbolic goods that are at stake. With the expression “instructional 

situation” we refer to each of the systems of norms that organize usual transactions 

between work done and knowledge claimed as taught or learned. By a “norm” we 

mean a central tendency around which actions in instances of a situation tend to be 

distributed.
[1]

 Earlier work has studied the situation of “doing proofs” in American 

geometry classrooms, in terms of its division of labor and its temporal entailments 

(Herbst & Brach, 2006; Herbst, 2002). We have further hypothesized that as teacher 

and students participate in an instructional situation, they hold themselves and each 

other accountable for responding to the presumption that they should abide by those 

norms. Teachers, in particular, make use of a practical rationality, a system of 

dispositions, categories of perception and appreciation that allows them to handle the 

presumption that they should abide by a norm (Herbst & Chazan, 2006). This paper 

explores the practical rationality that geometry teachers invest when handling the norm 

that a new theorem needs proof: What are the categories of perception and appreciation 

that matter on the decision that a proof is needed and on the appropriateness of the 

proof produced? The importance of this question lies in the fact that in spite of the fact 

that in mathematics every theorem has a proof, in American geometry classrooms 

some theorems are proved but others are not.  

Our interest is the nature and role of proof in the geometry class. Herbst & Brach 

(2006) studied the division of labor between teacher and students in the instructional 

situation of “doing proofs” in which students’ engagement in proving is exchanged for 
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claims on their knowledge of how to do a proof. In those situations teachers are 

responsible for identifying the task as one of doing a proof, for setting of initial 

conditions, and for providing the statement to be proved. Students are responsible for 

orderly producing the statements and reasons that constitute the proof. Each of those 

“statements” is often a description of a property of the figure represented in a diagram 

or a transformation of a prior statement, supported by a previously known “reason”—a 

theorem, postulate, or definition. Yet, the proposition proved—the claim that in the 

given conditions the conclusion is true—is often of little consequence: Being stated as 

a true statement about a specific diagram, neither the teacher is responsible to teach it 

nor students must demonstrate they know and can remember it.  

A look at the work of mathematicians suggests that proofs might be present in other 

occasions of classroom life: when theorems, those general, consequential statements 

that collect knowledge for further use are installed in the public knowledge. Our 

inquiry as to the nature and role of proof in geometry instruction took us then to 

examine another instructional situation, which we call “installing a theorem” and 

which we define provisionally as the system of norms that regulate what teacher and 

students need to do to be able to claim that the class knows a new theorem.  

METHODOLOGY WITH NOVEL TECHNIQUE 

To pursue our interest on the normative aspects of 

teaching, rather than on the preferences and beliefs 

of particular individuals, our project gathers data 

from groups of experienced geometry teachers 

confronting together representations of teaching 

that showcase instances of the instructional 

situation we want to learn more about. We use a 

novel technique to gather data on teachers’ 

practical rationality. We create stories of classroom 

interaction and represent those stories as 

animations of cartoon characters (Fig. 1). These 

characters interact in ways that might or might not be common in American geometry 

classes. They showcase instruction that straddles the boundaries between what we 

hypothesize to be normative and what we expect practitioners would consider odd. The 

representations of teaching are shown to the participants of monthly study groups 

composed of experienced teachers of high school geometry who meet for three hours 

every month to discuss one or two stories. The discussion among teachers, where they 

point to odd or intriguing moments in the story, suggest alternative stories, or bring 

concurrent stories of their own, is therefore a main source of our data. This paper 

focuses on discussions of the story called “Intersection of Medians” from two of those 

sessions. We describe the teaching represented in the animation to demonstrate how a 

story embodies hypotheses about the normative in teaching, and to ground 

anticipations of participants’ reactions which we examine after.  

Fig. 1. A theorem on medians 
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ANALYSIS OF THE ANIMATION “INTERSECTION OF MEDIANS” 

The animation “intersection of medians” deals with two theorems about the medians in 

a triangle. Theorem 1 states that “the medians of a triangle meet at a point.” Theorem 2 

states that “if O is the centroid of triangle ABC then the areas of triangles AOB, AOC, 

and BOC are equal.” The following phases of the instruction represented in the 

animation describe the different ways in which those theorems are installed.  

Phase 1: Defining median and conjecturing Theorem 1 

Students are reminded that they know perpendicular bisectors, angle 

bisectors, and altitudes of a triangle. Medians are defined. The teacher 

invites a conjecture about medians and students propose that they meet at 

a point. Theorem 1 is introduced without proof. Centroid is defined.  

Phase 2: Conjecturing 

The teacher invites students to conjecture a property of the triangles made 

by the centroid of a triangle (Fig. 1). After some trials a student proposes 

that they are equal in area and the teacher writes Theorem 2.  

Phase 3: Presentation of proof 

Teacher presents a proof for Theorem 2 by subtraction of equal areas (see 

Fig. 2 and Herbst, 2006, p. 324). Students answer focused questions 

whereas the teacher steers the argument, writing it as a paragraph 

(omitting reasons and some statements “for the same reason”).  

Phase 4: Verification activity  

The teacher hands a sheet with a triangle for students to find the centroid 

and measure the areas of the three triangles. They collect measures. 

Phase 5: A new conjecture  

Students are asked to look at the six triangles made by three medians 

inside the triangle and invited to make a conjecture. The conjecture that 

they are equal in area is disputed on account of perceptual differences. 

  

How the theorems are installed in the animation  

Conjecturing and corroborating the theorems. Theorem 1 is stated in analogy with 

other concurrency properties for segments in a triangle and admitted true without proof. 

In particular, the possibility that three medians might meet in three points is never 

entertained. This development conforms with customary practice in American 

geometry classes where all theorems are not usually proved. We anticipated whereas 

this oddness might prompt a mathematically educated observer to comment, 

experienced geometry teachers would not react to the installation of Theorem 1. 

The installation of Theorem 2 is also odd but in a different way. The teacher invites 

students to conjecture the theorem providing only a diagram that students can look at 

(see Fig. 1). Whereas the mathematically educated observer might be able to use the 

definition of medians to enrich the representation, creating other resources with which 

eventually produce a reasoned conjecture, the resources provided by the animated 

teacher are at odds with what geometry teachers customarily afford when they give 
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students opportunities to make a conjecture about metric properties in a diagram. The 

animated students are not given the chance to measure dimensions and calculate areas 

until after the proof has been done. When they produce the conjecture they grope from 

claim to claim until they succeed, leaving the impression that they are using the 

teacher’s responses to prior guesses as resources to make a conjecture. We anticipated 

that this would frustrate our participants, and that they would suggest an earlier 

exploration focused on measuring areas of particular triangles. The empirical 

verification of the theorem conducted after proving would not only be unhelpful for 

conjecturing but would also risk casting doubt on the proof. (In the animation the area 

found for one triangle is slightly less than the other two and the animated teacher 

brushes that off as a measurement error.)  

Characteristics of the proof produced. Fig. 2 contains the finished proof of Theorem 2 

as shown on the board. Several characteristics are odd for those who are familiar with 

how proofs are usually written in geometry classes. Notably, the proof is written in a 

paragraph rather than in two columns of statements and reasons (Sekiguchi, 1991). The 

proof does not restate the given or spell out all statements, and it states none of the 

reasons. Additionally, the proof does not build on congruent triangles, which is the 

customary way in which proofs are done in geometry classrooms (Herbst, 2006). We 

want to understand what elements of the teachers’ rationality are brought up by our 

study participants to notice and appraise 

the decisions made by the animated 

teacher in proving this theorem. The 

question was particularly important to ask 

apropos of this animation since, as the 

proof did not stage work similar than what 

students would do when “doing a proof,” 

we anticipated teachers would not 

necessarily warrant this proof as an 

example of “how to do a proof.”  

The division of labor in “intersection of medians.” In the animation one can note 

several actions by teacher or students that straddle the boundaries of what is normative 

in geometry classrooms when students are engaged in “doing a proof.”  Not only the 

teacher writes each statement but also he authors what he writes, which appears often 

as something that students could not have produced. Unlike in a situation of “doing 

proofs,” key elements to be used in the proof (such as the altitudes BP and OQ; Fig. 2) 

are not provided at the onset but called up as needed. Likewise, students use the 

diagram to produce statements that would ordinarily feature in the proofs they are used 

to do (e.g., OB is congruent to itself), but these are not taken into the argument. 

Whereas students partake of the production of the proof by uttering responses to the 

teacher’s questions, those utterances serve at best as indication that some students are 

following the teacher (and others are not), not that they are producing the content of the 

proof the teacher writes. We thus conjectured that if study group participants were to 

Fig. 2. Proof given in the animation 
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positively appraise the animated teacher’s decision to prove Theorem 2, they would 

invest categories of appreciation and perception different than those invested in 

managing the situation of doing proofs. We expected that those comments might help 

explain on what grounds some theorems are proved whereas others are not proved in 

high school geometry classes. 

ANALYSIS OF STUDY GROUP SESSIONS 

The data gathered consist of videos of study group sessions and their transcripts. By 

identifying odd aspects of the animation, our prior section identifies particular 

moments in the story where participants’ comments could be expected. We provide 

illustrative data from two sessions (121405 and 040406) in which the animation was 

viewed, discussed as a whole, and commented after stops requested by participants.  

All theorems need not be proved. Our participants confirmed that, from their 

perspective, proofs need not always be given, which obviously sets the situation of 

“installing theorems” apart from that of “doing proofs” in which a proof is required. 

Participants didn’t object to the statement of Theorem 1 without proof and actually 

manifested that they had never proved Theorem 1 in their classes. Furthermore, some 

of them expressed that the proof for Theorem 2 might not be needed either. When 

“installing theorems”, proving has less priority than introducing the theorem itself. 

Some of participants expressed this clearly for Theorem 2:  

Tina Yeah if you were choosing to do the other one, I mean—you have a limited 
amount of time for every theorem they're gonna be given.  We don't have 
time to prove every single one of them. (121405) 

Denise If you know the theorem you would be able to use it. Sometimes—well all 
the time—you don't really have to know how to prove everything to be able 
to use it. So as long as they can use it. (121405) 

Glen It would ultimately be more important to go through that discovery process 
you just talked through than to go through that proof that none of them are 
gonna understand. […] (121405) 

The reasons given stress that students need to be able to use a theorem (e.g., in 

calculations), that students may instead benefit by knowing where a theorem comes 

from (which presumably the proof does not provide), that understanding proofs is hard 

for students, and that proofs are optional investments of time for the teacher.  

Corroborating a theorem. From those comments, we can see that, unlike in the usual 

practices of research mathematicians, the truth of a theorem is not really established in 

a geometry class by showing the existence of a proof. This may not surprise those who 

have characterized traditional mathematics teaching in broad strokes as relying on 

teacher and textbook authority (Smith, 1996). However, teachers in our study groups 

did allocate value to raising students’ degree of conviction (or epistemic value; Duval, 

1991) of a statement. They reacted to the animation on the point that the conjecturing 

process did not allow students to believe the truth of the theorem:  
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Megan Before they start that theorem, they should be believers. Why would the 
areas be the same? Why does that make sense? Why would I believe that? 
[…] (121405) 

Lynne But just can we even have an example that we think the conjecture is even 
true? Because the teacher just said ‘yup the area one is going to work.’  And 
I think the kid wanted a little verification there, like are the areas really 
equal? (040406) 

Ester [At] the end he has them measure them. Maybe, say, why don’t they 
measure them first. (040406) 

If teachers may not consider that the proof of a theorem is always needed but they 

value students’ thinking to the point that they may spend time on (possibly empirical) 

work to build conviction of its truth, the question still remains as to what roles a proof 

may play the proof is provided. One reason may be to enlighten students in regard to 

the form a proof may have.  

Form. The animated teacher called the proof he did a “paragraph proof” and took to do 

it deliberately, as an alternative to the “two-column proof” that students were used to. 

Participants’ reactions to the form of the produced proof were positive:  

Carl I got the sense from his paragraph proof, which I liked actually […] one of 
the things I like about proof is that it’s really just, um, documenting 
information that we’re trying to keep track of. […] well not by the end of 
the proof chapter, but certainly by the time we’ve done a whole bunch of 
proofs, […] I’m really just more inclined to just say hey, just, you know, get 
that, get that down, don’t forget about that triangle. […] (040406) 

Megan I guess I think I’m agreeing with him that now at this point of the year, I 
guess I’m relaxing on that and saying I want you to just write out a logical 
argument. Because some of them, I think the proof format ends up —they 
get so bogged down in the format. […] (040406) 

Hence, a proof without all the detail might be acceptable as the year progresses. 

Students need to experience getting the important (as opposed to all) information 

needed for the argument, relaxing the strictures of how to write it and yet keeping it a 

logical argument. A proof of a theorem could thus be an opportunity for students to 

learn the difference between a logical and a detailed argument, but in that case the 

shares of work producing the proof might be different than when “doing a proof.” 

Proof production. In the animation, the teacher presented the proof. Students 

intervened little, and rarely introduced elements for the argument. Participants were 

ambivalent on this matter. Some positive appraisals included: 

Karen […] there’s this sort of thing where math as a spectator sport is absolutely 
wonderful. […] And it’s like going to art appreciation. (040406) 

Lynne It’s like coaching volleyball, you have to take them to a varsity game or a 
college game so they see the flow of how the whole thing works and then 
they really want to get back and try those smaller basic things (040406) 

In some negative appraisals participants noted that the teacher didn’t take into account 

students’ comments while doing the proof. For example:  
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Denise […] Because those kids were not doing the proof with him. I mean they 
were, but they wasn't. […] people were just calling out the answers and he 
[the teacher] was just waiting on the right answer. (121405) 

Marvin […] you might say to the students, […] how are we going to find areas in 
this figure, or what triangles do we know the area of? […] do you students 
see any triangles in here that we could show […] are equal area. Or, what 
do you […] know about the figure in general? (040406) 

Participants’ comments note that the class didn’t do what is expected of them when 

they “do a proof.” Yet students’ “appreciation” or understanding of the proof could 

also be a legitimate goal for the teacher. However, on that point the animated teacher is 

found wanting: a teacher should access and support students’ understanding better.  

A proof connects ideas. A participant also identified another role of proof in the proof 

given for Theorem 2. Whereas Megan downplayed the usefulness of the theorem itself 

she valued the proof because it connects some mathematical ideas:  

Megan That particular theorem [is] not very useful on it's own after that.  But the 
proof is actually very useful. I think that's a perfect example of a theorem 
where the proof's a lot more useful than the theorem is, in the end. Because 
you're talking to kids about the area of a triangle, and what is the crucial 
thing to know? I need to know the base and the height, and the fact that 
the—you have different triangles that have the same base and height and 
they all have the same area  (121405)  

Thus teachers’ rationality allows for proof as a way to explain and connect ideas, 

agreeing with what scholars have proposed as desirable (e.g., Hanna, 1990).   

CONCLUSION 

From the teachers’ observations as to the need for corroboration of a theorem, we infer 

a new element that distinguishes situations of “installing theorems” from situations of 

“doing proofs.” In the latter the truth of the conclusion is not at stake: the problem 

often asserts that a proof can be done and the work is to show that the givens imply the 

conclusion. Herbst (2004) has argued that usual proof exercises confront students with 

a diagram that not only represents the objects in the statement but also is sufficiently 

accurate for students to be able to produce statements that also describe apparent 

diagrammatic truths. Theorem 2 illustrates that all geometric propositions cannot be 

warranted on such descriptive interactions with a diagram. Teachers’ reactions suggest 

that it is important for teachers to achieve, in a different way than by visual 

apperception, students’ conviction of the truth of the statement.  

We have located differences in the division of labor between “installing theorems” and 

“doing proofs”: in the former, statements can be unimaginable by students proof, 

details may be excluded, and a theorem may be established without proof. We may 

also see, from these results, some inconsistency which might happens in teaching 

practice across the situations of “installing theorems” and “doing proofs.” When 

“doing proofs” the conclusion cannot be used until proved. However, when “installing 

theorems,” the teacher makes it usable for students who need conviction but may be 
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better convinced by arguments other than proof. Thus, sometimes a theorem is 

introduced without proof, and other times its truth is corroborated empirically. Our 

data suggests that such practices, albeit problematic in that they foster misconceptions 

well documented in the learning literature (e.g., Fishbein & Kedem, 1982) may 

respond to teachers’ perception of what will convince their students at the moment 

when they need to appropriate the theorem.  

Notes and acknowledgements 
[*]

 This work is supported by NSF grant ESI-0353285 to P. Herbst. Opinions expressed are the 

authors’ sole responsibility and don’t necessarily reflect the views of the Foundation.  

[1]
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